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ABSTRACT   

Morphological and microstructural features visible in microscopy images of nuclear materials can give information 
about the processing history of a nuclear material. Extraction of these attributes currently requires a subject matter expert 
in both microscopy and nuclear material production processes, and is a time consuming, and at least partially manual 
task, often involving multiple software applications. One of the primary goals of computer vision is to find ways to 
extract and encode domain knowledge associated with imagery so that parts of this process can be automated. In this 
paper we describe a user-in-the-loop approach to the problem which attempts to both improve the efficiency of domain 
experts during image quantification as well as capture their domain knowledge over time. This is accomplished through 
a sophisticated user-monitoring system that accumulates user-computer interactions as users exploit their imagery. We 
provide a detailed discussion of the interactive feature extraction and segmentation tools we have developed and 
describe our initial results in exploiting the recorded user-computer interactions to improve user productivity over time.   
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1. INTRODUCTION  
An important problem in many medical and scientific image analysis applications is image quantification: the indirect 
measurement and characterization of physical objects through images. While relatively well defined, this problem 
continues to present a challenge since quantities of interest are very application-specific and accurate quantification 
typically requires a domain expert with a large amount of experience in interpreting the images available.  

In the image processing community, sophisticated algorithms are being developed to help provide consistent image 
quantification, however the focus is typically to provide general purpose tools. The goals of domain experts and image 
processing experts are complementary: 1) domain experts would like algorithms to reduce tedious and time consuming 
tasks as well as help improve consistency in ambiguous situations, and 2) algorithm developers would like to automate 
as much as possible and parameterize their algorithms in a way that is most useful to end users. In this light, the 
outstanding problem is how to best allocate image quantification tasks between humans and machines so that the domain 
expert’s (or end-user’s) productivity is maximized. Productivity is an application-specific quantity, but it typically 
characterizes the volume of data processed as well as the quality of quantification. For a general discussion of human-
computer interaction with particular focus on image quantification see Chapter 3 in [1].  

In this paper we describe our recent work in developing an interactive image quantification system for nuclear 
materials. We outline the key problems in the application in Section 2 and then briefly describe our system-level 
architecture and key components in Section 3. In Section 4 we discuss pixel-level interactions that have proven useful 
for image quantification in a large number of applications. In Section 5 we suggest region-level interactions and describe 
how they can be used to solve some of the specific image quantification tasks found in nuclear material forensics. In 
Section 6 we describe how machine learning can also be used to learn region-level interactions and present experiments 
which quantify the potential user productivity gains.  We conclude with a summary of our results and discussion of 
future directions.  
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2. NUCLEAR MATERIAL IMAGE QUANTIFICATION 

 
There are two main types of material that are of interest in our application: particles and metals. Some example Scanning 
Electron Microscopy (SEM) imagery of these two materials is shown in Figure 1. Many other imaging modalities are 
also used extensively in nuclear material forensics but were not considered in this paper. The main image quantification 
tasks identified by nuclear material domain experts include:  

1. Accurate particle/grain segmentation with minimal user intervention (accurate segmentation allows for 
the calculation of accurate particle metrics to contrast and compare samples and particles).  

2. Annotation and quantification of process indicators (image features such as friable versus non-friable 
particles, fracture marks, evidence of scintering, porosity of material etc.).  
 

 
Figure 1. Scanning Electron Microscopy images for Left) Uranium Oxide particles and Right) Plutonium metals.  

Similar tasks on similar images have been pursued by researchers in other applications including particles in SEM [2], 
[3] and optical[4], [5] imagery as well as metal SEM images [6], [7], [8], [9]. Segmentation is often a key step and many 
papers discuss specific filters and optimizations of standard segmentation algorithms to the specific images and content 
of interest. In nearly all cases, these papers provide highly automated solutions where the algorithm is highly optimized 
(by the image processing expert) to obtain good results. In this paper we focus on methods that empower domain experts 
(or end users) to optimize the algorithm through interactive image quantification systems.  

3. INTERACTIVE IMAGE QUANTIFICATION 
A large number of image quantification tools have been developed in both commercial and academic communities. 
Systems in use by nuclear material domain experts span from general purpose tools, such as Adobe Photoshop, through 
to specialized image acquisition and analysis packages that typically ship with the imaging instrument. In some sense, 
many of these systems provide end-users with interactive image quantification tools, in that users are able to select and 
apply a number of image processing algorithms (e.g., threshold, smooth, etc.) to solve their image analysis problems. 
However, we propose that several significant advantages can be gained by incorporating and exploiting interaction to a 
much greater extent. Specifically, we propose that interaction needs to play a more prominent role in the system-level 
architecture, and a more integrated role in the choice and application of image quantification tools.  

At a system level, there are three main components in a general image quantification system, which are shown in 
Figure 2. There is a database-type technology for storing and organizing images and associated metadata. There is an 
image viewer that provides the main interface for users to inspect and annotate images as well as execute image 
quantification tools. The third component is traditionally given the least attention, and is called workflow tracking. This 
component captures the sequence of choices that users make during image analysis and records it in the database for 
future reference. This repository of workflow histories becomes a second dataset which contains a detailed record of how 



 
 

 
 

particular quantification results were obtained (provenance). This record is useful for validation and quality control and 
several commercial and academic image quantification systems now support this capability in various forms.  

 
Figure 2. System architecture for an interactive image quantification system showing the key components.  

Our objective in implementing a prototype of Figure 2 was to develop a novel combination of image interface, image 
quantification tools, and workflow tracking with the following properties:  

• Intuitive Image Quantification: users interact directly with the image as much as possible using simple image 
annotation and mark-up tools to identify important observables that they see, rather than trying to quantify their 
observations by choosing sequences of image processing tools.  

• Adaptive Image Quantification: users are intimately involved in validating and correcting tool errors and this 
information, which is embedded in the workflow history, is exploited to improve the efficiency and accuracy of the 
image quantification tools over time. 

• Knowledge Capture: as domain experts use the system to help perform their regular work requirements, domain 
knowledge is captured explicitly within the workflow tracking system, and implicitly within optimized tools. This 
knowledge can be shared and used by non-expert users with minimal impact on domain experts.  

4. PIXEL-LEVEL INTERACTION  
One of the most intuitive ways for users to interact with images is through pixel-level mark-up or annotation. Paint-like 
drawing tools are provided and a user simply circles, or paints image content that has particular significance. This type 
of interaction is straightforward to implement since a user is able to identify and color individual pixels within the image 
regardless of the image content. The interaction can be described by an overlay which has a spatial relationship to the 
base image but no explicit relationship to image content. Almost all image processing systems provide this functionality 
and users often quantify their images manually with these tools e.g. manual delineation and classification of image 
content.   

Several researchers have proposed ways to learn and extrapolate pixel-level interactions. In our previous work we 
developed a machine learning system called GENIE (Genetic Image Exploitation) that learns from the users’ annotation 
of interesting versus non-interesting to predict future annotations [10]. An example of this system applied to SEM 
images of nuclear materials is shown in Figure 3. While the system was originally developed for satellite image analysis 



 
 

 
 

the approach is very general purpose and it is now being used in a variety of domains including quantification of digital 
pathology images [11]. A similar approach describes their interactive tools as crayons [12].  

 
Figure 3. Left) A user uses paint tools to color an anomalous feature of interest green and examples of non-
interesting content in red. Right) The GENIE system finds a sequence of image processing operators that can 
reproduce the annotation, which are then applied across the whole image to predict additional annotations.  

Pixel-level classification is not the only way to exploit pixel-level annotations. It is also exploited in some object 
segmentation algorithms, particularly in medical applications where the there is a single complex object of interest that 
must be delineated. For example, in active contour approaches a user provides a rough delineation of the object as a 
starting point for the segmentation algorithm [13].  In other cases, the user can provide markers, where pixels belonging 
to objects and background regions of interest are identified with paint-like tools much like those in Figure 3. These 
markers are used as seed pixels for graph-cut or watershed segmentation [14], [15]. 

Pixel-level interaction provides an intuitive and simple way for users to interact with image quantification tools and 
there are many research questions left to explore. For example, at what time-scale should the user and computer interact? 
In the examples described, the user and computer take turns during the interaction, but much finer time scales are 
possible. For example the user and computer may be able to work together to delineate an object of interest in real time 
[16].  Another open question concerns the complexity of model that should be used to represent how users annotate 
imagery. In the examples described annotations are assumed independent and even within annotations, pixels are 
assumed independent. However, as is often the case in hand-written character recognition, the temporal and spatial 
relationships between and within annotations could also be exploited in some applications [17].   

5. REGION-LEVEL INTERACTION  
Another way for users to interact with images is through region (or object) level mark-up. In this case users interact with 
regions defined by image content which means these regions are defined ahead of time using an image segmentation 
technique. This segmentation is typically error-prone and therefore does not perfectly delineate all regions of interest 
required by the user. However, it does provide a starting point from which a user can begin to intuitively interact with 
the image. In our prototype, our initial segmentation is based on a hierarchical watershed, and we allow the user to select 
the flooding level (with a threshold slider) prior to region-level interaction. This is shown on the left in Figure 4. By 
interactively adjusting the threshold, the user is able to select a scale appropriate to the content of interest [18].  

Given the initial segmentation, the user is then able to select, paint and manipulate the image at a region-level. There 
are three main types of interaction:  

1. Region classification: a user would like to organize the image into different categories of content. On the right 
in Figure 4 the user is selecting regions to exclude from future analysis, however regions could also correspond 
to the objects of interest.  

2. Region merging: the user selects multiple regions that they would like to manipulate and analyze as a single 
region. Region merging is usually required in areas of the image which are over-segmented in the original 



 
 

 
 

segmentation. On the left in Figure 5 we show an example where a particle has been segmented into multiple 
regions.  

3. Region splitting: a user selects regions that contain multiple image elements that the user would like to treat 
separately. Region splitting is usually required in areas of the image which are under-segmented in the original 
segmentation. On the right in Figure 5 we show an example where the user is able to selectively split a region. 
In this case, the user is able to locally adjust the flooding level used in the segmentation with a threshold slider.  

 
Figure 4. Left) the user interactively sets the flooding level used in the initial watershed segmentation. Right) 
Region classification: the user is able to select and choose labels for regions in the image.  

 
Figure 5. Left) Region merging: the user selects multiple regions that should be treated as a single region. Right) 
Region splitting: the user selects regions where further segmentation is required and in this case, adjusts the local 
flooding level used in the watershed algorithm.  

 



 
 

 
 

6. ADAPTIVE IMAGE QUANTIFICATION 
One of the key tasks in our application is to segment and quantify a large number of particles (or grains) so that the 
population statistics of the particles or grains in the sample can be estimated. This can be accomplished with the region-
level interactive tools described in the last section, but it is labor intensive. In this section we describe experiments to 
quantify how machine learning can help improve the efficiency of the process. In this paper we focus on region 
classification and region merging. Region splitting and methods to optimize the combination of interactions is a topic of 
future work.  

6.1 Region Classification 

To a first approximation, region classification can be posed as a standard classification problem. Regions are assumed to 
be independent and identically distributed samples from an unknown distribution, and our task is to find a classifier that 
will predict regions as belonging to one of a number of target classes. However, this problem differs from the standard 
classification problem in that training data may only be available for one class. For example, in our example in Figure 4, 
the user begins to exclude regions from further analysis. These regions make up the training data or examples of our 
target class. However the user does not provide examples of which regions should be included, and the remaining 
regions in the image are some mixture of regions the user would like to exclude and regions the user would like to keep. 
We call this type of one-side classification problem hemi-supervised learning to differentiate it from semi-supervised 
learning (which typically assumes training examples from all classes are available).  

To investigate the effectiveness of machine learning in this task we manually identified all the regions that should be 
excluded in sample imagery. A number of basic features for each region are calculated: the gray value mean, and 
variance as well as the region area and perimeter. For a given number of training samples we apply a machine learning 
algorithm and evaluate performance on the remaining regions in the image. We compare two different machine learning 
algorithms for the hemi-supervised problem described: 

1. Nearest Neighbor (NN): this one-sided variant of the traditional Nearest Neighbor classifier predicts by simply 
finding the minimum distance between the feature vector of the test region and the feature vector of all the 
training samples. We threshold this minimal distance at various points to produce a Receiver-Operator Curve 
(ROC).  

2. Support Vector Machine (SVM): we use the hemi-supervised SVM method we developed in [19]. In this paper 
we use a Radial Basis Function Kernel with the default parameters found in LibSVM [20]. The hemi-supervised 
method includes the unlabeled regions within the learning algorithm by assigning different weights to 
examples. Assuming the user is certain when they exclude regions, we set the SVM cost for errors very high (C 
= 1e6) and set the weight associated with labeled data very high (rho=1e6) in all our experiments. Although not 
optimal, we use the real-valued decision values from the SVM to generate ROC curves. This is somewhat 
justified by our novel method of choosing thresholds for our classifiers which is described next.  
 

To evaluate performance we use a variation of the detection rate. We observe that for a given image, there is a finite 
amount of work that a user must complete, and this corresponds roughly to the total number of excluded regions in the 
image which we denote 𝐸. We assume a unit of work is required for each region - a user selects each region with a 
mouse click. Given that a user has already selected some number of regions to exclude, a machine learning algorithm is 
trained and then applied to the complete image, correctly identifying 𝑃 of the remaining excluded regions and 
identifying 𝐹 false alarms. Assuming a unit of work is also required to discount false alarms (a user deselects the 
predicted region) the fraction of work required by a user to complete the task compared to the total work is 
approximately: 

𝑊𝑜𝑟𝑘 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
(𝐸 − 𝑃 + 𝐹)

𝐸
 

On the left in Figure 6 we show an example of this quantity for the two different machine learning algorithms. We 
used 5 regions as training data. We observed that although not guaranteed, there is often a unique minimum for this 
curve. In practice, after a machine learning algorithm has been developed, the user is able to move along this curve by 
adjusting a threshold slider, much like the slider used for segmentation shown on the left in Figure 4. We propose that 
the interactive slider will allow a user to set the threshold at the point which minimizes the work required.  



 
 

 
 

 
Figure 6. Left) A modified ROC curve used to emphasize work required for Nearest Neighbor (NN) and Support 
Vector Machine (SVM) based algorithms. Right) The reduction in effort for region classification produced by NN 
and SVM methods as a function of the amount of training data provided by the user.  

Assuming users are able to select the optimal threshold we performed a second experiment, shown on the right in 
Figure 6, where we plot the fraction of work required versus the number of training samples as a fraction of the total 
number of regions to be excluded. We observe that the SVM outperforms the NN method regardless of the amount of 
training data. We also observed that the greatest efficiency gains were made with a very small amount of training data 
e.g. 2 - 4 regions. By spending their time correcting the classifier output instead of performing the task manually, the 
user is able to complete the task with approximately 40% of the effort. However, our model for work does not include a 
cost for the user to validate the correct classifier outputs (only classifier errors are penalized) which means our estimate 
is somewhat optimistic.   

6.2 Region Merging 

Region segmentation is similar to region classification in that we are only given positive examples of which regions to 
merge. We therefore approach region merging as a hemi-supervised learning problem. However unlike region 
classification, even a first order approximation will require the classifier to consider multiple regions. To investigate this 
further we over-segmented SEM imagery of particles, and then manually merged regions corresponding to particles of 
interest. The number of regions involved in each merge event (each training sample) varied from 2 to 8. We calculate 
features for these merged regions, and in our experiments we used the first six Hu invariants calculated from the spatial 
moments [21]. For the test set we exhaustively generate all possible combinations of regions (subject to connectivity 
constraints) up to a maximum number of regions (in our case 10) and calculate the corresponding Hu invariants. We then 
performed a similar experiment to Region Classification and the results are shown on the left in Figure 7. We observe 
that the learning algorithms are able to again provide a substantial reduction in effort with very few training examples. 
However in this case the NN and SVM methods obtain similar performance.  

In our experiments we purposely chose images where particles had little overlap and this led to images with sparse 
connectivity. This allowed us to increase the maximum number of regions considered during prediction and investigate 
the effect that this number has on classification performance. On the right in Figure 7 we show performance with 4 
training samples, at various values of this parameter. Somewhat surprisingly we found that the best performance was 
obtained when we only considered pair wise merging events. This is in contrast to the training data which had merging 
events up to size 8. This can be partly attributed to our method of evaluating effort for merges which heavily penalized 
incorrect merging: If a predicted merge event contained 6 regions, and one of these regions was a false alarm, then the 
prediction cost 6 units of work due to the added complexity required by the user to split and correct the predicted merge.  



 
 

 
 

  
Figure 7. Left) The reduction in effort for region merging produced by NN and SVM based algorithms as a 
function of the amount of training data. Right) the reduction in effort produced by algorithms when merge 
predictions are constrained to a maximum number of regions. 

7. SUMMARY 
Nuclear material forensics suggests a relatively new and unexplored application for interactive image quantification 
tools: the accurate and consistent segmentation of multiple particles / grains within microscope images. In this paper we 
have presented a new way to improve the efficiency of this process through region-level interaction and hemi-supervised 
learning. Our experiments produced promising results on real data and future work will continue to refine the approach 
by exploring larger classes of images and features.  

We have also presented a system level architecture for interactive image quantification that includes workflow 
tracking as a basic component. This will allow us to explore and exploit user interactions at a system-level. Specifically, 
we plan to observe how users combine region merging, splitting and classification during image quantification and will 
investigate how more sophisticated user modeling might help to maximize system-level performance metrics and capture 
domain knowledge within optimized tools.  
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