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Abstract 

The goal of interactive machine learning is to help scientists and engineers exploit more of their 

specialized data in less time.  Interactive machine learning focuses on methods that empower domain 

experts to control and direct machine learning tools from within the deployed environment, whereas 

traditional machine learning does this in the development environment. This difference allows 

interactive machine learning systems to be more responsive, more accurate and cheaper to develop and 

maintain. This article provides a basic introduction to the main components and tries to untangle the 

many ideas that must be combined to produce practical interactive learning systems. It also describes 

recent developments in machine learning that have significantly advanced the theoretical and practical 

foundations for the next generation of interactive tools.  

Introduction 

In a variety of science and engineering applications the quantity of data being collected far exceeds our 

capacity to digest and interpret that data. Machine learning can help in these applications by providing 

tools that clean up, filter and identify the most relevant subsets of data.  The broad applicability of these 

tools is a strength, but because they lack domain-specific input, they are not as accurate or as robust as 

they could be, and domain experts do not fully trust them.  

There are two main ways to make machine learning tools more accurate and useful in specific 

applications. The most common approach employs computer scientists, or knowledge engineers who 

have a sophisticated understanding of both the application and the tools, to translate and encode what 

they learn from domain experts. This is a time-consuming and expensive process, but the importance of 

science and engineering datasets often justifies the up-front investment.  

Interactive machine learning provides a second way to tailor machine learning to specific applications. 

The central idea is to engage end-users directly and to provide data visualization and annotation tools 

that enable experts to customize the tools for their application. This approach is particularly attractive in 

applications where objectives are harder to define up-front, scientific hypotheses are subject to change, 

or cost /time constraints mean solutions that are good enough today are preferred over solutions that 

will be optimal tomorrow.  

Interactive machine learning ideas and techniques have been pursued in a variety of forms since 

machine learning began. These efforts come from several research communities including analysis, 

visualization, and human-computer interaction and deal with a number of different technical issues 



including learning, interfaces, programming and interaction. The first objective of this article is to 

untangle some of these components to better understand where the state-of-the-art is, and where it is 

going. Towards this goal, this article is divided into 3 parts corresponding to the axes of a 3 dimensional 

design space for interactive machine learning systems (see Fig. 1). The second objective of this article is 

to introduce readers to new developments along these axes, and describe how they enable new kinds of 

interactive machine learning tools. 

 
Interactive Machine Learning Design Space:  Machine learning tools are used within end-user 

environments in a number of different ways. In traditional machine learning applications (the origin in 

Fig. 1), tasks are unreduced and humans and machines work independently on different tasks. The 

computer is responsible for the automated tasks, and the user is responsible for different, manual tasks. 

In interactive machine learning, humans and computers begin to work together on the same task. For 

example, the most common decomposition divides the task into two parts and the human and the 

computer each do a part. We call this aspect of interactive machine learning ‘task decompositions’ 

(Part I).  

One of the unique features of machine learning is training: the ability to optimize tool performance 

using examples of desired results. In traditional machine learning applications, the algorithm designer 

uses a fixed set of labels, supplied up-front by the domain experts, to train machine learning tools 

before they are deployed on the larger dataset or data archive. This approach (Batch, Labels in Fig. 1) 

and has proven successful both in theory (rigorous proofs) and in practice (commercial applications). But 

recent developments in machine learning show that there is an opportunity to enhance the generality, 

efficiency and accuracy of the training process. We have moved from label learning to structure 

learning, formalized in terms of clusters, constraints, matches and other generalizations of standard 

Figure 1: Traditional machine learning has developed important methods that lie at the origin of this design 

space. Interactive machine learning builds upon advances in the training vocabulary and the training dialog to 

produce more sophisticated and dynamic task decompositions between humans and machines.  



labels. We call these aspects of training the ‘training vocabulary’ (Part II). We have also moved from up-

front learning to on-line, incremental and active learning paradigms that formalize an increasingly 

interactive dialog between users and their data.  We call these aspects of training the ‘training dialog’ 

(Part III).  

Interactive machine learning is not for everyone. Consumer electronics are driving large numbers of 

applications where the end-users are consumers and must be enticed into providing feedback and 

training data for machine learning systems. The priority in these applications is to minimize the 

interaction [1]. This makes optimizing tools more difficult, but these applications are not critical, and the 

mistakes made by these tools do not have significant consequences. However, science, engineering, 

health and defense datasets are specialized and applications are often critical. Domain experts in these 

applications are also highly motivated and willing to interact with data, and tools, in a much more 

sophisticated way than current systems allow. These are the applications where interactive machine 

learning can have the most impact, and these are the applications that will drive interactive machine 

learning tool development.  

Part I – Task Decompositions 

Machine Learning Predicts and Humans do the Rest 

 

One of the most common task decompositions involves computers in a first stage identifying subsets of 

data that are relevant to humans in a second stage. This is a common decomposition because 

computers can do what they do best – analyze large volumes of data - and the users can do what they 

do best – analyze a small subset of data in more detail. In this section we describe a number of different 

tasks where this decomposition is common. Often this decomposition comes about because the task is 

just too complex for computers to get it right, and so humans are required to validate, clean-up and 

correct the results.  

Content Detectors: A very important task in machine learning is to identify relevant subsets of data. We 

use the term relevant very broadly and it could represent anything from faces in imagery to trends in the 

stock market. This task is formulated as a machine learning problem by associating a variable 

          with each data sample   that indicates that the sample is relevant (+1) or not (-1). The 

challenge is to find a function   that predicts   and makes a small number of mistakes: 

 ( )   [ ( )   ]      (1) 

The (Bayes) optimal detector    is the function (from the space of all possible functions,  ) that 

minimizes Eq. 1:  
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This detector can also be interpreted as a hypothesis test between a model of relevant data     ( ) 

verse a model non-relevant data     ( ). In this formulation, the solution to Eq. 2 can be expressed in 

terms of a likelihood ratio test:  
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Mistakes come in two flavors, and in interactive applications, these are often presented as precision--the 

probability that data predicted +1 is actually relevant, and the recall--the probability that all the relevant 

data was identified. A detector with precision equal to 1 would have no false alarms (FA). A detector 

with recall equal to 1 would have no missed detections (     ). Of course in practice, due to any 

number of factors (including noise, background variability and approximations made by the machine 

learning methods) detectors will almost certainly have non-zero number of false alarms and missed 

detections.  

In the interactive setting it is common to cue (or present) the user with the positive predictions so that 

they can perform triage and/or additional analysis on the reduced data volume. The user would like to 

process as much relevant data as possible, but their time and effort is limited, and so a useful variation 

of the standard design criteria (1) is to limit the number of false alarms. For example in fraud detection 

the classification system often has no utility unless the false alarm rate can be kept below a fixed level. 

This is called a Neyman-Pearson, or constant false alarm rate, design criteria [2]: 

                                          

Anomaly Detection:  In some applications the relevant content of interest is not known in advance or it 

is difficult to define formally, but users still need help exploring large datasets. In this case machine 

learning methods have been developed which use more general models of relevance and non-relevance. 

Anomalies are defined as subsets of the data with low likelihood. Anomaly detectors can be designed by 

finding functions with the following form:  

  ( )  
 ( )
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where  ( ) is the probability density function (i.e. likelihood) for data sample   and  ( ) is the uniform 

density [3]. Various alternatives to  ( ) have been suggested and may provide more informative 

models of relevance such as a product distribution of the data marginals [4, 5]:  
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Anomalous Change Detection: This model of relevance has particular utility when the factorization is 

appropriate to the application. One application where this idea has been developed in detail is change 

detection, where data typically falls into two (or more) sets. For example, imagine we are looking for 

(anomalous) change between two spectral signatures taken at two different points in time    

[                ] and     [                   ]. A suitable detector would be [6]:  



  ( )  
 (  ) ( 

  
)

 (       )
         

Rare Category Detection: A variation of the anomaly detection problem is rare category detection 

(RCD). It is motivated by the intuition that in addition to having low-probability, content of interest will 

form small clusters (or categories). This clustering assumption implies we are often more interested in 

small groups of anomalies than we are in single isolated anomalies. This has also led to the concept of 

cluster (or category) discovery: users only need to see one example from each category and the 

objective is to maximize the number of categories shown to the user while minimizing the number of 

examples shown. This is in contrast to traditional anomaly detection, where the objective is to identify 

all anomalies as accurately as possible. This is illustrated in Fig. 2.  

Theory work has called the RCD problem “multiple output identification” and has characterized the 

separable case [7]. A number of metrics for quantifying the RCD assumptions in more practical settings 

have been suggested including the maximum change in local density [8], quantities associated with 

boundary points [9] as well as a number of quantities derived from hierarchical mean shift clustering 

[10]. In previous work we suggested the detector: 

  ( )  
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Where   ( ) is a smoothed (or smoother) density estimate of the data compared to  ( ) [11]. In 

practical settings, once a user has discovered a set of exemplars, they often want to find additional 

examples of particular categories. This second (exploitation) stage has been called rare category 

characterization [12]. 

 

 

Figure 2:  On the left is an example of a synthetic rare category detection problem. Nine rare 

categories (circled) are embedded within a larger background category. The rare category detection 

objective differs from anomaly detection because the detector is only rewarded for one example from 

each category. Detectors tuned to this objective (ratio) outperform anomaly detection which identifies 

isolated low probability samples (all samples outside of the circle in the left panel).  

Anomaly detector 

Rare categories 



Humans Sketch and Machine Learning does the Rest 

 

The second task decomposition is the complement of the first and this time, the human goes first. It has 

proven successful in several applications where the task is typically easy for a human to partially (or 

approximately) complete, but to fully complete the task would be tedious, expensive and error prone.  

The decomposition benefits both parties: the human does less work since they only have to provide a 

partial solution. The computer can obtain higher accuracy compared to automated methods since its 

computation can be focused on the relevant task. This decomposition is seen in a number of 

applications which we briefly describe.  

Labeling data: A number of data exploitation tasks can be reduced to semi-automatic labeling of data. A 

human provides labels (e.g. +1/-1) for a subset of the data, and the computer predicts labels for the 

unlabeled data. In this section we focus on transductive learning [13], which means we are given the 

unlabeled data at the same time as the labeled data, and the labels are not generalized beyond this 

fixed dataset. In theory (and practice) there is often not a clear distinction between transductive and the 

more common inductive methods, which we call learning by example in the next section [14]. In 

interactive settings, however, this distinction is often very clear. In the transductive case, users are 

required to interact with each new dataset to generate new labels. In the inductive case, the interaction 

can be generalized to future datasets, so that it is possible (in principle) for the user to stop labeling 

after the first dataset. A number of popular techniques in semi-supervised learning are transductive [15] 

and there are a number of applications where transductive methods are preferred.  

For example, imagine a quality control application (see Fig. 3). There is too much variability in the 

production processes from one day to the next to design an automated inspector. But within each day, 

there is enough consistency between parts for the job to become repetitive and tedious. In terms of 

interactive machine learning there are several open questions with respect to transductive methods. For 

example, how should users balance their time between providing labels up-front, validating and 

correcting the inevitable mistakes that the learning system will make? This depends on a number of 

application specific factors such as the relative cost of labeling data, verse validating results, verse 

correcting results. A simple illustration of this tradeoff is illustrated on the right in Fig. 3.     



 

Clustering data: A large part of understanding data is being able to group subsets of the data into 

conceptual clusters. Humans are very good at identifying trends and important features of data in one, 

two to three dimensions, but they need help dealing with the many hundreds of dimensions, and 

multiple data types, that are often associated with real-world data. Organizing and visualizing clusters is 

key to a large number of interactive data analysis tools that are motivated from a visual analytics 

perspective [16]. These tools enable users to efficiently browse and explore large volume datasets with 

intuitive graphical user interfaces [17].   

Interactive machine learning methods can also help in these applications by optimizing the clustering 

strategy based on a small amount of user input. The typical user interaction is formalized as equivalence 

constraints: pairs (or sets) of data that belong to the same cluster and/or pairs (or sets) that belong to 

different clusters [18]. These constraints can be obtained from the user through labeling interfaces, or, 

through drag-and-drop type interfaces where user’s visualizing clusters are able to drag subsets of data 

closer to other subsets [19].  

Solution methods for constrained clustering have been developed for both transductive and inductive 

settings. In the transductive setting the constraints are assumed to be specific to a cluster and there is 

no attempt to generalize the constraints to other clusters. When a new clustering problem is presented, 

the user provides new constraints. One of the first transductive methods extended K-Means [20]. We 

discuss inductive versions of this problem in the next section with respect to training by example.  

Image segmentation:  Similar to clustering, the goal of image segmentation is to partition data (in this 

case, pixels) into a number of disjoint contiguous sets. Unlike the general clustering problem, image 

segmentation typically deals with low-dimensional data with strong local dependencies.  But with these 

Figure 3: Left) A user needs to inspect 12 solar cells from the production line and identify which cells pass 

quality control. The user labels 4 cells (left) and then machine learning predicts labels for the remaining 8 

(middle). Validating the results, the user identifies two samples that must be corrected (right). Right) Results on 

a synthetic problem showing the relationship between up-front effort and the total effort required when the 

cost of validation is small compared to the cost of labeling and correcting. 

Step 1 Step 2 Step 3 



(often significant) differences in mind, interactive image segmentation can be considered one of the 

most successful applications of constrained clustering.  

User input is typically generated by paint program like tools, producing paintbrush strokes shown in Fig. 

4, which identify pixels that should belong to the same segment (or cluster). Different brush strokes are 

assumed to belong to different segments, and this generates non-equivalence constraints. Interactive 

image segmentation is an important tool in bio-medical imaging for the accurate delineation of complex 

3-dimensional objects such as organs and bones [21], identifying synaptic pathways [22], as well as 

identifying, counting and characterizing different cell types [23]. Similar applications are also found in 

material science [24], geology, manufacturing and food inspection.  

A large number of techniques have been developed for interactive image segmentation and many are 

inspired by transductive semi-supervised clustering techniques [25]. The strong local dependencies also 

mean that many methods are formulated in terms of Graphical Models, or energy minimization on a 

graph. Graphical models are briefly introduced in Fig. 4. Couprie et. al. show how graph-cuts [26], 

random walkers [27], watershed [28], geodesic [29] and many other interactive image segmentation 

systems can be understood as different parameter choices of a general energy function [30]. The 

importance of interaction in segmentation problems has also started to motivate frameworks for 

evaluating performance that don’t require expensive human subject testing [31]. 

 

Figure 4: A graphical model is a graph 𝐺  (𝒱 𝒞) defined by a set of vertices 𝒱 and cliques 𝒞, a set of 

random variables 𝑌, and a real-valued energy function 𝐸𝐺(𝑌). Each vertex 𝑣  𝒱 indexes a random 

variable 𝑦𝑣  𝑌. In image segmentation the vertices lie on a lattice corresponding to the image plane, 

and each variable indicates whether that location is part of the background (white) or the foreground 

(black). Each clique 𝑐  𝐶 indexes a subset of the random variables, 𝓎𝑐   𝑦𝑖  𝑦𝑗    𝑦𝑘 . In the example, 

we illustrate pairwise cliques and the energy function has the form, 𝐸𝐺(𝑌)   f𝑐(𝓎𝑐)𝑐 𝒞 , where feature 

functions, f𝑐, are chosen for the application. In image segmentation, pairwise feature functions assign 

low energy to smooth variable assignments based on the magnitude of the image gradient. This means, 

that the optimal assignment, 𝑌  𝑎𝑟𝑔𝑚𝑖𝑛𝑌  𝐸𝐺(𝑌), produces a spatially contiguous labeling that is 

consistent with strong edges (as shown in the hypothetical result). 



Part II - The Training Vocabulary 

 

So far we have described decompositions where humans and computers work together on tasks with 

relatively static job assignments. In this section we begin to describe the interactions between humans 

and machines during training. Training can be used prior to deployment to improve the computer’s role 

in the decompositions described in Part I. It can also be used in the deployed environment to make 

interactive systems more dynamic: systems can optimize their performance based on data and 

interactions, and thereby improve over time. The potentially dynamic nature of the training interaction 

is described in Part III of this article. In this section we focus on the vocabulary used during training and 

describe the two main categories of interaction shown in Fig. 5.  

  

Learning from Examples 

Labeling Data: In Part I we introduced content detectors, and then briefly described their application to 

labeling data in a transductive semi-supervised setting. In this section we describe the more common 

setting, which is inductive supervised learning. Training assumes a user provides labels for a randomly 

selected subset of the data. The training set includes   (data, label) pairs:  

    ( ( )  ( )) ( ( )  ( ))   ( ( )  ( ))       

from which we can define a training set (or empirical) error:   

Learning from Examples: This is the most 

common interaction. The key idea is to 

collect examples of humans performing a 

task, and then use the examples to train 

a computer to perform the task.    

Specialized Programming: The second form of 

interaction amounts to humans programming the 

computer to perform the task. Several interactive 

machine learning efforts can be considered 

specialized programming languages that enable 

users (who may not necessarily know how to 

program) to optimize performance.  

Figure 5: Two main categories of interaction used in training.  
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Learning from examples involves finding a function (from a space of functions,  ) that minimizes a 

version of empirical error that provides good performance guarantees.  

 ̂             ̂( )      (4) 

Performance guarantees relate the performance of  ̂ in Eq. 4 to the (Bayes optimal) performance    in 

Eq. 2 and help us understand things such as 1) consistency: given infinite samples does the performance 

of  ̂ converge to the performance of   , and 2) sample complexity: how many training samples are 

required for  ̂ to reach performance within   of   . When we learn functions using this method, we can 

also use them to predict labels on future data, assuming that it is drawn from the same distribution as 

the training set.  

As a concrete example of how this approach is used in an interactive setting, we turn to image 

processing, and the task of labeling pixels. This application is the basis of the Crayons interactive 

machine learning system [32] as well as our own Genie image exploitation system [33]. Both of these 

systems obtain training examples from users through paintbrush-like tools, and then use supervised 

learning methods to develop a pixel classifier that can be applied to the larger image or image archive. 

This is illustrated in Fig. 6.  

 

Semi-supervised Learning: Inductive learning methods are also applied in semi-supervised settings, and 

the unlabeled data (in addition to the labeled training set) often helps detector performance. In some 

interactive settings it is only possible (or convenient) to collect examples from one of the classes. Often 

this is the target class, and this variant of semi-supervised learning has been called learning from 

positive and unlabeled examples [34, 35]. In other applications, such as anomaly detection, the labeled 

class can correspond to data which is known to be uninteresting, or nominal [36, 37].  

Figure 6: The paintbrush user-interface is 

similar to Fig. 4, but represents a completely 

different form of interaction. Previously, the 

brush strokes were used as seeds from which 

algorithms would grow segments. The number 

of brush-strokes was equal to the number of 

final segments.  

In the figure to the right, the brush strokes in 

the lower left are translated into pixel labels. 

The number of brush strokes is not important, 

just the total number of labeled pixels. The 

labels are used to train a pixel labeler, which 

can then be applied to a much larger image or 

image archive.  



 

Metric Learning:  Inductive machine learning methods have also been developed for constrained 

clustering. In this case, methods are often called metric learning, which highlights the fact that 

constraints are used to optimize a distance measure which can then be used with standard algorithms 

(such as K-means) to improve performance on future datasets. Fig. 7 ( adapted from [38] ) illustrates the 

concept. Many extensions of this basic idea have been developed, both parametric [39] and non-

parametric [40]. A Bayesian treatment of the problem incorporates the clustering constraints within a 

prior [41]. A method called Bayesian Visual Analytics (BaVA) integrates a projection component for 

visualization purposes and implements a drag-and-drop interface for generating soft constraints [42].  

 
Structured Output Prediction: Over the last ten years, training methods for image segmentation have 

advanced rapidly in a sub-field of machine learning called structured output prediction. This field (and 

others) have extended learning by example from labels (and constraints) to sequences, trees, 

segmentations [43-45] and other complex objects [46]. Training structured output predictors proceeds 

much like label learning, except the training examples are much more complicated. For example, when 

labeling pixels each training example involved a single pixel and its corresponding label. When learning 

to segment, each training example involves a complete image and its corresponding segmentation. This 

is illustrated in Fig. 8 

In general, structured training data is complex and collecting it from users in an interactive setting is 

non-trivial. In addition, the structure is typically fixed in advance and only approximates reality, which 

means training data is often not intuitive. This has limited the applicability of structured prediction 

methods to applications where the training data investment can be justified. For example, the “I2T: 

Image-To-Text” research project at UCLA leverages an association with the LOTUS Corporation, where 

10 full time employees generate the necessary training data [47]. Researchers are beginning to address 

this problem and methods that enable structured training data to be collected from users in more 

interactive applications  are beginning to appear [48-50].  In [51] the authors developed a HMM based 

system for learning sequences of mouse clicks used by humans to delineate shapes in imagery. More 

recently, an interactive approach to image-level semantic labeling of images was proposed [52]. 

Learning to Imitate: As structured prediction grows more ambitious, new connections are being made 

to hard problems in robotics  [53], where the problem is called imitation learning [54] or behavioral 

cloning  [55]. Imagine you are trying to program a computer to drive a vehicle. The control problem is 

Figure 7: Left) A hypothetical clustering from a 

Euclidean distance based method (such as K-

means) produces an initial clustering of the data. A 

user identifies equivalence (green) and non-

equivalence (red) constraints. Right) A 

parameterized Mahalanobis distance metric 

optimized to satisfy the constraints. The modified 

distance metric generalizes constraints to other 

clusters.  



difficult for humans to get right with programming alone.  Imitation learning provides a complementary 

approach, where humans provide examples by driving the vehicle through remote cameras and 

controls. In this case, the examples that they generate are trajectories through a state-space. These 

trajectories are used by inverse reinforcement learning methods to optimize cost / reward functions 

such that the computer’s trajectories are closer to the examples [56-58]. Imitation learning has 

produced a number of general purpose techniques that are starting to be adapted to more interactive 

training paradigms for data exploitation tasks [59].  

 

Specialized Programming 

The second main form of human-computer interaction during training is programming. Several early 

works in interactive machine learning can be considered specialized programming languages that enable 

users, who are not programmers, to optimize solutions. More recent work has developed a number of 

more general purpose methods for summarizing and visualizing machine learning results so that users 

can intuitively steer learning systems to meet application-level objectives.  

Graphical languages: A common framework for early efforts in interactive machine learning involves a 

scatter plot visualization of data and direct (or indirect) manipulation of decision boundaries. Decision 

trees are a popular method for this type of training [60] because they are fairly easy for most users to 

understand (a decision is made by applying a number of rules), and they treat high-dimensional datasets 

as a series of 1-dimensional features, which means they are relatively easy to visualize. Tools for 

designing Bayesian networks have also benefited from these characteristics although the probabilistic 

Figure 8: Structured output prediction is a generalization of label learning ( 𝑦          ) to a vector output 

space, 𝑌  𝐿𝐷 , 𝐿         𝑘 , that encodes complex structures. In label learning, the content detectors are 

simple functions: 𝑦  𝑓(𝑥). In structured output prediction, content detectors have the form: 𝑌  

𝑎𝑟𝑔𝑚𝑖𝑛𝑌𝐸𝐺(𝑌), where 𝐸𝐺(𝑌) is the energy function defined in Fig. 4. Much like label learning, we introduce 

parameters into the graphical model energy function, 𝐸𝐺 𝜃(𝑌), and then uses IID training examples to find 

optimal values for these parameters.  



rules used in the tree are more difficult to understand [61]. The approach has also been developed for 

more complex models such as Hidden Markov Models for bio-informatics applications [62]. The 

performance of user-specified models has been shown to be competitive to learning by example in 

some applications [63]. However, although these tools are often extremely useful to machine learning 

researchers, they generally have not moved outside of the research environment.  

Some things are best left to humans: Other forms of specialized programming are very widespread and 

have become standard components in many learning by example applications. They typically focus on a 

small set of parameters that: 1) are difficult to estimate from examples, and 2) are understandable to 

users through intuitive visualization tools. For example, thresholds are difficult to set automatically 

because they often depend on prior probabilities that can change from one dataset to the next. 

Thresholds are also easy for users to understand and manipulate with sliders, particularly if the impact 

of the threshold on the result can be visualized in real-time. This approach is used extensively in labeling 

and segmentation applications [64].  

When users adjust thresholds in binary classification problems, they are also indicating they prefer one 

type of error over another e.g. users care more about false alarms than missed detections. This type of 

interaction can be generalized to the multi-class setting by enabling users to interact with the classifier’s 

confusion matrix. The EnsembleMatrix method uses the confusion matrix to provide real-time feedback 

on performance while users adjust the parameters and structure of an ensemble classifier [65]. The 

ManiMatrix approach enables users to directly specify class specific preferences by adjusting weights on 

the confusion matrix itself [66]. 

Feature selection is another critical component in real world applications, and it is often up to the user 

to decide which features should be used in the machine learning system. Interactive data visualization 

tools can help users make these decisions up-front [67]. Researchers have also developed methods to 

incorporate user feedback on feature relevance into the training method [68]. This is motivated by the 

observation that labeling features (as relevant or not relevant with respect to a target class) is often 

easier for users than labeling examples. A general purpose learning framework, called generalized 

expectation, has been used to exploit feature labeling in classification [69] and structured output 

prediction settings [70]. Note, that this framework could be categorized equally well as learning by 

example with what the authors call weakly labeled data.  

Learning from humans programming computers:  

In many of the programming techniques we have 

described, the user interaction is not learnt or 

applied to future datasets. The final program can be 

applied to new data, but the programming itself is 

specialized. But there are situations where the 

programming can become examples for a meta-

learning system. For example, a user may apply a 



pixel classifier to a number of images and adjust the final threshold each time, and there may be 

relationships between the image content and the threshold that could be exploited. This type of 

approach has been used to automate user interactions observed with the EnsembleMatrix method [71].  

For the programmers:  Domain specific languages for machine learning continue to be developed as 

machine learning components mature and machine learning applications grow. In almost every 

language, developers are realizing that machine learning provides key functionality that must be 

supported This includes open source languages, such as Haskell  [72] , as well as commercial languages, 

such as .NET  [73]. Although these languages are too specialized to be used by end-users today, they will 

be a key technology for building (and scaling up) the interactive learning systems of the future.  

Part III - The Training Dialog 

 

So far, we have discussed common task decompositions and outlined the growing vocabulary that 

humans and computers use during training. In this section we describe the different interactive dialogs 

that can emerge between humans and computers during training.  

The Monologue 

 

The standard (or default) formulation of the training interaction is batch learning where all training 

examples are provided up front. The examples could be labels, pairwise constraints, sequences, or any 

of the complex structures described in Part II. In all cases, examples are assumed to be drawn 

independently from the same underlying distribution (IID: Independent and Identically Distributed). 

Training methods take these examples and typically solve convex optimization problems to find models 

with low probability of error. A large body of theoretical work provides performance bounds for this 

problem setting [13, 74]. 



The dialog between end-users and computers during batch learning is very simple: 1) The user generates 

examples using a data browser with annotation tools, and 2) the computer ingests these examples into 

the learning algorithm.  

One Word at a Time 

 

A different formulation of training provides examples to the computer incrementally: one sample at a 

time, or more generally, a subset at a time. This is called online learning and the approach has significant 

computational advantages when there are a large number of examples. Theoretical developments show 

that online learning methods can obtain performance bounds within  (   ) of batch methods [75-77].  

Practical developments have produced some of the fastest and most scalable learning methods for 

support vector machines [78] and structured output prediction [79].  

Most work on online learning assumes that although examples are introduced sequentially, they are still 

IID. Recent work has started to relax this assumption [80] and this will help guide method development 

for interactive learning systems where users monitor and provide periodic examples of data with 

temporal dependencies such as time-series data feeds.  

Long-term learning:  Although not directly related to online learning methods, incremental learning 

strategies are also important to a long-term interactive dialog. Computers are becoming increasingly 

pervasive, and user interaction has rapidly changed from single person interactions over short periods of 

time with no history, to persistent multi-person interactions over long periods of time.  

It will take some time for unified theories of training at multiple scales to emerge, but researchers are 

beginning to prototype frameworks [81], and practical applications are already being deployed. A 

general approach in these long-term learning systems is to manually partition the accumulated 

examples into sets appropriate to the application. For example in content based search, examples have 

been integrated through separate short-term and long-term components [82]. In a commercial email 

application examples are integrated through separate individual and group preference components [83].  

 

 



A Conversation 

 

When examples are provided incrementally to a learning system it opens the door to more interactive 

learning paradigms where there are dependencies between the model learnt at time  , and the training 

examples provided by the user at time    . These dependencies take a number of different forms 

depending on the interactive setting, and in this section we discuss some of them.  

Relevance Feedback: When computers are used as content filters or detectors (as described in Part I) 

users can often provide feedback (e.g. labels) for predicted results. This concept is used extensively in 

content based search applications, such as image retrieval, where it is called relevance feedback  [84]. In 

this setting, the typical dialog is:  

1. Start with a small number of examples and build a content detector.  

2. Apply content detector to unlabeled data and present most relevant samples.  

3. User provides labels for samples indicating they are relevant (or not).  

4. Update content detector based on the new labels.  

5. Goto 2 

Relevance feedback has traditionally been motivated by search in semi-structured data, and includes 

techniques such as query expansion, where text queries are expanded to include things like synonyms 

and spelling mistakes [85]. Machine learning methods have also been developed, but are often 

presented in the context of specific applications such as document retrieval [86].  More recently, general 

purpose machine learning methods and analysis techniques are being incorporated into relevance 

feedback methods [87]. A fundamental problem in relevance feedback, and interactive dialogs in 

general, is sampling bias. The samples that the user labels in step 3 are not selected randomly, but the 

methods used in step 4 assume they are. This means there are no guarantees that query (or detector) 

performance will get better as more labels are obtained, and in fact, it may get worse. Fig. 9 provides a 

simple illustration of the sampling bias issues.  



 

 

Active Learning: Active learning uses a different strategy for selecting examples. It focuses on 

minimizing the number of labels required to obtain a given level of performance (the sample 

complexity). Note, that with respect to the end-users application, these strategies may well select the 

most uninteresting samples in the data set. In some sense, active learning is a training strategy for non-

interactive settings: once a user has done the minimal amount of work to build an accurate detector, 

they can then make productive use of the detector in the application.  

A long-standing challenge for machine learning theory has been to develop active learning strategies 

that perform as well as batch learning, but with fewer samples. Mitigating sampling bias has been a key 

topic, and a number of methods have been developed that provide safety guarantees and batch learning 

performance in the worst case [88]. New analysis frameworks have also been required, and new 

parameters have been developed for active learning performance bounds that enable sample 

complexity to be quantified and understood [89, 90].  

Rare Category Detection: Interactive exploration of large datasets has motivated a large number of 

iterative learning techniques based on anomaly and rare category detection. The dialog follows a similar 

format to relevance feedback, but often starts with no examples, and unsupervised detectors in step 1. 

A number of different strategies for selecting which samples to label have been proposed. Often these 

strategies include a combination of the most anomalous samples (a relevance feedback strategy), as 

well as the most ambiguous samples (an active learning strategy)  [91, 92]. This mixed strategy arises 

from the fact that there is often a tradeoff between exploration and exploitation in discovery type tasks. 

We would like to bring important data to the users attention as quickly as possible but we are unsure 

Sampling Bias: Two examples, adapted from [88], where data is uniformly distributed in clusters on 

a line. White blocks contain data with label +1 (i.e. relevant). Black blocks contain data with label -1. 

Gray blocks contain a 50% mixture of +1 and -1 labels. Content detectors include the space of 

threshold functions (data to the right of the threshold is predicted +1). These examples show how 

common sampling strategies for relevance feedback (left) and active learning (right) converge to 

classifiers with higher error than the detector found through IID sampling (𝑓 ). 

Initial samples will (typically) come from the 

large mixture and the initial detector will be𝑓. 

In the relevance feedback setting, users are 

shown the most relevant samples, which are 

the samples furthest right. Labels for these 

samples are a mixture of +1,-1 and so the 

detector does not move.  

Again, the initial sample would (typically) place 

the initial detector at𝑓. In the active learning 

setting, the user is shown data that is closest 

to the decision boundary. Labels for these 

samples are a mixture of +1,-1 and so the 

detector does not move.  

Figure 9: Understanding and mitigating sampling bias is an important first step in developing 

interactive training dialogs such as relevance feedback and active learning.  



exactly what data is important. Rare category detection has mainly focused on the category discovery 

problem, and this is a form of exploration. However once categories are discovered, it can be useful to 

improve the accuracy of detectors for these known categories. This enables users to find more examples 

of known categories (exploitation tasks such as rare category characterization [12]). But also, if we have 

a better idea of what we know, it may help us identify what we don’t know. This means that even 

though active learning strategies do not show users what they want to see in the short term, they can 

lead to detectors that discover more categories with less samples in the long term. A decision theory 

framework that balances the active learning and rare category objectives was recently proposed [93]. 

User Bias: So far we have focused on situations where the computer determines which examples to 

label next based on the previous result. An alternative is for the user to choose which samples to label 

next. This means that users must be able to visualize (or browse) a larger subset of data and predicted 

results to make their selections. Empowering users to select the samples can be advantageous since 

users often know the most important aspects of the problem. In addition, users can sometimes learn the 

strengths and weaknesses of a learning system through interaction, and then choose examples which 

guide the system towards better solutions. An example of this phenomenon is shown in Fig. 10. A 

number of other interactive search applications have been developed that support and benefit from this 

type of interaction [94]. Theory for how to formally incorporate this type of bias into learning systems is 

yet to be developed. 

 



 

Future Directions 

Interactive machine learning has an exciting future with many open research questions and many 

opportunities in science and engineering. One area where we expect to see particular progress is in the 

generality (and pervasiveness) of interactive learning systems. Currently, most interactive learning 

systems are specialized tools that expect a specific form of interaction and are used in specific parts of 

the application. But in most applications, users are engaged in a much larger conversation that involves 

multiple tools and activities such as data preparation and post-processing. In Part II we described the 

growing vocabulary that has emerged in machine learning and we suggest this will fuel the development 

Figure 10: The task (shown in the lower right) is to delineate the airplanes visible on a runway in a ten band 

multi-spectral image. The red dashed line at 0.07 (upper right) is the performance of Fisher’s linear 

discriminant with IID samples – the classifier has low variance and high bias. In the top left, a user provides a 

small (biased) subset of labels. The discriminant result (T=1) has an error of 0.2 (red marker). The user 

inspects the predicted result, provides additional examples, and the discriminant is re-optimized. This process 

iterates. At the end of the 9
th

 iteration, the user has labeled the data shown in the bottom left and the 

discriminant result (T=9) has an error close to 0.02. The user performs the experiment 4 times, starting at 

different parts of the image each time. The average of the 4 experiments is shown in black with error bars and 

consistently outperforms the discriminant trained with IID samples (green marker).   



of more general interactive systems. In Fig. 11 we show a typical image analysis workflow used in 

material science that already uses the entire vocabulary described in Part II.  

 

One of the greatest challenges for interactive machine learning will be the consistent and efficient 

exploitation of the complex conversation that occurs in workflows like Fig. 11. It is the interaction, more 

than the vocabulary, that often contains the invaluable domain knowledge that humans possess and 

machine learning needs [95]. Users are very good at finding ways to use a small set of (often 

inadequate) tools to reach their objectives, and machine learning can use this to advantage. For 

example, the final product in Fig. 11 could be used as training data in a structured output prediction 

system. However this is an extremely complex problem and it is unlikely that existing methods would 

solve this problem with any reasonable level of accuracy without extensive hand tuning (even if there 

were large numbers of these examples available). However, it may well be that the sequence of user 

interactions can provide interactive learning systems with a road-map to efficient solutions.  

As part of dealing with unstructured dialogs, interactive machine learning must identify and partition 

recurring patterns of interaction as examples. Current interactive systems require that the sequence of 

interactions be manually partitioned into relevant subsets. For example, we could post-process the 

workflow in Fig. 11 to extract all the merge examples, and then develop tools that predict additional 

merge candidates [96, 97]. This approach provides a starting point but it ignores temporal dependencies 

that may provide important clues into the structure of the problem e.g. users may often split and merge 

segments in sequence, and / or, the user may be using different merging strategies at different points in 

time.  

Figure 11: A typical 

workflow used by 

material scientists to 

characterize microscopy 

images of particles. 

Starting with the original 

image (top- left), a user 

interacts with data (e.g. labeling) and algorithms (e.g. 

setting thresholds) to produce the final data product 

(bottom-right). The workflow varies depending on 

the image content, and the research objectives, but it 

is time-consuming and expensive for experts to 

repeat on all the data collected in an experiment.  



Another part of dealing with an unstructured dialog is knowing when to automate, and when to engage 

users. In Part I we described binary task decompositions in which both humans and computers played 

roles. In Part III we described dialogs in which some of these task decompositions evolve over time as 

the computer learns to automate, or as humans program new components. We also saw that learning 

can be applied at multiple levels, and sometimes user interactions are automated and sometimes they 

are not. A great promise of interactive machine learning is automated task decomposition where the 

dialog evolves over time and leads to optimized task decompositions for the problem and the resources 

at hand. It is interesting to note that in other areas of computer science, technologies such as crowd-

sourcing are enabling humans to be cost effective in tasks that are traditionally performed by machines 

[98]. Different groups of humans (and machines) have different skills, and different costs, and this will 

be an important factor in how tasks are decomposed.  

Finally, as humans and machines become more tightly integrated in machine learning, human factors 

related to user bias and attention come into play [99]. This topic also appears in the context of 

exploiting crowd-sourced data products and methods to mitigate noise and other issues are an active 

topic of research [100]. Human factors may well become even more important as interactive machine 

learning expands the vocabulary and flexibility that users have. As we saw in Part III, user bias can help 

steer simple classifiers to better solutions, and in fact, bias is critical to interactive machine learning 

reaching its full potential. Theory for formalizing the positive impacts of bias (domain expertise), as well 

as methods to mitigate the negative impact of bias (human factors), are in their infancy. In practice, we 

have yet to see if humans and computers can learn to trust each other in critical applications.  
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