
Learning Watershed Cuts Energy Functions

Reid Porter1, Diane Oyen1, Beate G. Zimmer2,

1 Intelligence and Space Research Division, Los Alamos National Laboratory,
Los Alamos, New Mexico, 87545, USA.
{rporter, doyen}@lanl.gov

2 Dept. of Mathematics, Texas A&M University - Corpus Christi,
Corpus Christi, Texas, USA.
Beate.Zimmer@tamucc.edu

Abstract. In recent work, several popular segmentation methods have been uni-
fied as energy minimization on a graph. In other work, supervised learning
methods have been generalized from predicting labels to predicting structured,
graph-like objects. A recent contribution to this second area showed how the
Rand Index could be directly minimized when using Connected Components as
a segmentation method. We build on this work and present an efficient mini-
batch learning method for Connected Component segmentation and also show
how it can be generalized to the Watershed Cuts segmentation method. We pre-
sent initial results applying these new contributions to image segmentation
problems in materials microscopy and discuss challenges and future directions.

Keywords: segmentation, watershed, structured output prediction.

1 Introduction

Image segmentation is a fundamental task in image and video processing that has
wide ranging application. Segmentation has traditionally been an unsupervised prob-
lem, although incorporating user input into segmentation methods has also had a long
history. In more recent years, a subfield of machine learning known as structured
output prediction has made significant progress and there is now much interest in
incorporating supervised learning into segmentation problems. A large number of
these efforts focus on joint segmentation and labeling (also called semantic segmenta-
tion), where the training data (or labels) define object types or categories within the
image [1, 2]. There have also been efforts to incorporate learning into the more tradi-
tional segmentation problem, where the training data defines a partition, or clustering,
of the image. However, these efforts often treat learning and segmentation as inde-
pendent steps within a multi-step process [3, 4].

In this paper, we describe recent work in learning to segment in the context of
structured output prediction. This involves formulating segmentation as energy mini-
mization on a graph in Section 2. We describe a learning method that was proposed
for Connected Component segmentation in Section 3 and show how it can be extend-
ed to Watershed Cut segmentation in Section 4. In Section 5 we present our key con-
tribution which is an efficient mini-batch learning algorithm for both types of seg-
mentation. In Section 6 we report experimental results where we compare learning
performance on segmentation tasks in materials microscopy.

2 Segmentation as Inference

A very useful way to describe a large number of segmentation methods is energy
minimization on a graph 𝐺𝐺 = (𝒱𝒱,ℰ). The vertices 𝒱𝒱 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑃𝑃} are associated
with spatial regions (or locations) and edges ℰ = �… , 𝑒𝑒𝑖𝑖𝑖𝑖 , 𝑒𝑒𝑗𝑗𝑗𝑗, 𝑒𝑒𝑘𝑘𝑘𝑘 , 𝑒𝑒𝑙𝑙𝑙𝑙 , … � associate an
unordered pair of vertices. Often the vertices are associated with pixel locations and
the structure of the graph is fixed in advance as a regular grid with edges connecting
each vertex to its 4 (or 8) closest neighbors. However, the approach is equally appli-
cable to super-pixels and irregular structures.

The image contains 𝑃𝑃 pixels 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑃𝑃), 𝑥𝑥𝑖𝑖 ∈ ℝ𝐷𝐷, where each pixel is as-
sociated with a vertex (through its location) and has one (grayscale), three (color) or
any number of dimensions (multi-, hyper-spectral). Also associated with the set of
vertices is a set of discrete random variables (labels), 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑃𝑃), 𝑦𝑦𝑖𝑖 ∈
{1, 2, … ,𝐾𝐾}, that identify the segment to which each location is assigned. The value of
𝐾𝐾 determines the number of unique segments in the image, and typically depends on
the image and segmentation method. When every pixel is assigned to its own segment
𝐾𝐾 = 𝑃𝑃. Segmentation is defined as minimization of an energy function on the graph.
This minimization is known as inference and is defined by Equation 1:

𝑌𝑌� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌 𝐸𝐸(𝑌𝑌,𝑋𝑋) (1)

Several segmentation methods can be expressed as a pairwise energy function that
sums terms associated with each edge in the graph:

𝐸𝐸(𝑌𝑌,𝑋𝑋) = � 𝑔𝑔�𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑗𝑗 ,𝑋𝑋�
𝑒𝑒𝑖𝑖𝑖𝑖∈ℰ

 (2)

One choice of 𝑔𝑔, known as correlation clustering, has the following form [5]:

𝑔𝑔�𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑗𝑗 ,𝑋𝑋� = 𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑗𝑗�𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� (3)

Where 𝐼𝐼 is the indicator function that returns 1 when its argument is true, and 0
otherwise. 𝐴𝐴:𝑋𝑋𝑖𝑖𝑖𝑖 → ℝ is a real valued function (often called an affinity function), and
𝑋𝑋𝑖𝑖𝑖𝑖 is the subset of the image used by the affinity function to determine if pixels 𝑖𝑖 and
𝑗𝑗 should be in the same segment. In principle 𝑋𝑋𝑖𝑖𝑖𝑖 could be the whole image, but in
practice it is typically a local neighborhood that includes 𝑖𝑖 and 𝑗𝑗. 𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� > 0 indi-
cates pixels 𝑖𝑖 and 𝑗𝑗 should be in the same segment and 𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� < 0 indicates they
should be in different segments. Minimizing Equation 2 with Equation 3 is known to
be NP hard.

In recent work [6], Couprie et. al. showed how a large number of segmentation
methods can be obtained with particular choices for 𝑔𝑔. This included the watershed
cut segmentation method [7], which can be defined for positive affinity functions,
𝐴𝐴+: 𝑋𝑋𝑖𝑖𝑖𝑖 → ℝ+ as:

𝑔𝑔�𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑗𝑗 ,𝑋𝑋� = 𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑗𝑗� �𝐴𝐴+�𝑋𝑋𝑖𝑖𝑖𝑖��
∞

 (4)

Couprie et. al. provide a computationally efficient algorithm for minimizing Equa-
tion 2 with Equation 4, called the Power Watershed. A case of particular interest in
this paper, is the case when all affinities within the graph are distinct, or have unique
values. In this case a labeling that minimizes Equation 2 with Equation 4 coincides
with the labeling defined by the unique minimum spanning forest of the graph.

Another way to make inference tractable is to use binary edge weights:
𝑔𝑔�𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑗𝑗 ,𝑋𝑋� = 𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑗𝑗�𝐼𝐼�𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� > 0� (5)

In this case a minimum labeling can be found by simply discarding the edges with
non-positive affinity, and running connected components on the remaining graph.
This solution is known as a perfect clustering in the correlation clustering literature,
and in this paper, we refer to it as Connected Component segmentation.

3 Learning Connected Component Segmentation

A critical design choice in all of the segmentation methods defined in Section 2 is
the affinity function. In traditional segmentation this function is fixed. For example, a
popular choice is to estimate the magnitude of the gradient. However, this is an appli-
cation specific choice, and this motivates supervised approaches which tailor the
affinity function to the application through learning.

To apply learning to segmentation we must define a loss function to measure how
well predicted segmentations match a ground-truth segmentation. We use a slight
variation of the Rand Index, which we call the Rand Error (RE). It counts the number
of pairwise differences between the predicted segmentation 𝑌𝑌� = (𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑃𝑃) and
the ground-truth segmentation 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑃𝑃), both of size 𝑃𝑃 pixels. This is de-
fined in Equation 6.

𝑅𝑅𝑅𝑅�𝑌𝑌� ,𝑌𝑌� = �𝑃𝑃2�
−1

� 𝐼𝐼�𝑦𝑦�𝑖𝑖 ≠ 𝑦𝑦�𝑗𝑗�𝐼𝐼�𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑗𝑗� + 𝐼𝐼�𝑦𝑦�𝑖𝑖 = 𝑦𝑦�𝑗𝑗�𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑗𝑗�
{𝑖𝑖,𝑗𝑗}∈𝑃𝑃×𝑃𝑃

 (6)

One of the earliest uses of the Rand Index in learning was for clustering [8]. The
correlation clustering energy function was used for inference (Equation 3) and the
Structured Support Vector Machine framework was used for learning. We note that
the only real difference between clustering and segmentation, in this context, is in the
choice of the graph structure and in the choice of affinity function. In clustering the
graph structure is typically fully connected, but in segmentation the graph is typically
the 4 or 8-connected grid described previously. The correlation clustering energy
function is intractable in both cases, and approximate inference methods are used
within the learning algorithm.

In more recent work, Turaga et. al. [9] showed that for Connected Component
segmentation, the gradient of the Rand Index could be calculated directly. One of the
key ideas is to treat the binary edge weights in Equation 5 as a classifier. Turaga et. al.
use a convolutional neural network for the classifier, but in this paper we use a simple
linear model. Although the linear model is not as expressive as the convolutional
network (and unlikely to do as well on real-world problems), it is easier to optimize

which makes comparing learning objectives easier. Our linear edge classifier is de-
fined in Equation 7 where 𝜙𝜙 calculates fixed features for each edge and 𝑤𝑤 ∈ ℝ𝐷𝐷 is a
vector of real-valued parameters.

𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝐼𝐼�𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� > 0� = 𝐼𝐼�〈𝑤𝑤,𝜙𝜙(𝑋𝑋𝑖𝑖𝑖𝑖)〉 > 0� (7)

Note that the edge classifier, as defined, does not quite solve the segmentation
problem defined in Section 2. The graph has been partitioned, but unique segment
identifiers have not been assigned to the vertices. This is where connected compo-
nents comes in.

To incorporate connected components within the edge classifier learning algorithm
we need to relate the edge prediction 𝑦𝑦�𝑖𝑖𝑖𝑖, made in Equation 7, to the vertex prediction
𝐼𝐼�𝑦𝑦�𝑖𝑖 = 𝑦𝑦�𝑗𝑗�, required in Equation 6. Turaga et. al.’s maximin procedure does exactly
this. In words, if there exists a path (max) between vertices 𝑖𝑖 and 𝑗𝑗 that is completely
connected (min) then connected components will assign the same label to 𝑖𝑖 and 𝑗𝑗.
More formally, if 𝒫𝒫𝑖𝑖𝑖𝑖 is the set of all paths in 𝐺𝐺 between vertices 𝑖𝑖 and 𝑗𝑗, then the
connected components procedure guarantees:

 𝐼𝐼�𝑦𝑦�𝑖𝑖 = 𝑦𝑦�𝑗𝑗� =
𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝 𝒫𝒫𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑘𝑘𝑙𝑙𝜖𝜖 𝑝𝑝 {𝑦𝑦�𝑘𝑘𝑘𝑘} (8)

A key property of the maximin procedure (Theorem 1 in [9]) is that it commutes
with thresholding. This property enables the maximin procedure to be used within
standard learning algorithms. Turaga et. al. propose an online stochastic gradient
descent learning algorithm using a square-square loss function. At each iteration a
random pair from Equation 6 is selected and the maximin procedure is used to esti-
mate the gradient and update the classifier. In Section 5 we discuss learning algo-
rithms in more detail and present a mini-batch version of stochastic gradient descent
which makes more efficient use of the maximin procedure.

4 Watershed Cuts Segmentation

In recent years the traditional flood-filling metaphors and algorithms for watershed
segmentation have been linked to the energy minimization frameworks described in
Section 2, which has enabled a number of theorems and efficient algorithms to be
developed [6]. In this context, segmentation by Equation 4 is known as Watershed
Cuts [7]. When all the edge weights (affinities) within the graph are distinct, there is a
unique minimum spanning forest (MSF). This MSF can be defined by a cut of the
graph where each connected component produced by the cut corresponds to a tree
within the MSF. The set of edges that define the cut have been called border edges,
and can be identified by a local algorithm [10]. In this section we write this local
algorithm in terms of a threshold function acting on the graph. This provides a direct
link to the Connected Component segmentation method and suggests that we can use
the same maximin procedure that was used to learn Connected Component segmenta-
tions to learn Watershed Cuts segmentations.

When all affinities are unique, the edges that are part of the watershed cut have an
affinity that is larger than at least one neighbor on both sides with smaller affinity. We

denote the neighbors of vertex 𝑣𝑣𝑖𝑖 as 𝑁𝑁𝑖𝑖, and the set that excludes vertex 𝑣𝑣𝑗𝑗 as 𝑁𝑁𝑖𝑖 ∖ {𝑗𝑗}.
We also use the shorthand notation 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� to represent the value of the affinity
function at edge 𝑒𝑒𝑖𝑖𝑖𝑖. The set of edges that belong to watershed basins (those not part
of the watershed cut) can be identified with the indicator:

𝐼𝐼�𝐴𝐴𝑖𝑖𝑖𝑖∗ − 𝐴𝐴𝑖𝑖𝑖𝑖 > 0� where

𝐴𝐴𝑖𝑖𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘∈ 𝑁𝑁𝑖𝑖 ∖{𝑗𝑗}𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘∈𝑁𝑁𝑗𝑗 ∖{𝑖𝑖}𝐴𝐴𝑘𝑘𝑘𝑘 �.
(9)

Given these definitions (and assumptions), we can implement the Watershed Cut
segmentation as a two-step process, very similar to Connected Component segmenta-
tion:

1. Apply the threshold test (Equation 9) to each edge in the graph and throw
away edges that are below threshold (in this case, below zero).

2. Run a connected component procedure on the remaining graph to obtain the
vertex labels.

If �𝐴𝐴𝑖𝑖𝑖𝑖∗ − 𝐴𝐴𝑖𝑖𝑖𝑖� has a unique value for each edge in the graph, this two-step procedure
will minimize Equation 2 using Equation 4. The only real difference between this
two-step procedure and Connected Component segmentation is that the binary edge
weight is a function of two edges instead of one. As we will see in the next section,
this does not appear to introduce any significant new challenges for learning.

5 Algorithms for Maximin Learning

The maximin procedure is a function of the entire graph and is computationally ex-
pensive to execute for every pair in the Rand Error. Turaga et. al. show that the bene-
fits of directly optimizing a segmentation loss can justify this expensive. One way of
maximize the benefit / cost ratio of the maximin procedure is to use batch (or mini-
batch) stochastic gradient descent. To better understand how we can do this, we return
to the Rand Error. If we write 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐼𝐼�𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑗𝑗� and 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝐼𝐼�𝑦𝑦�𝑖𝑖 = 𝑦𝑦�𝑗𝑗�, then Equation
6 can be expressed as:

𝑅𝑅𝑅𝑅(𝑍𝑍,𝑌𝑌) = �𝑃𝑃2�
−1

� 𝐼𝐼�𝑧𝑧𝑖𝑖𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖𝑖𝑖�
{𝑖𝑖,𝑗𝑗}∈𝑃𝑃×𝑃𝑃

 (10)

The Rand Error compares all possible pairs of pixels across both images. The set of
variables that includes 𝑧𝑧𝑖𝑖𝑖𝑖 is therefore typically much larger than the set of variables
that includes 𝑦𝑦�𝑘𝑘𝑘𝑘. Furthermore, the maximin procedure guarantees that every term 𝑧𝑧𝑖𝑖𝑖𝑖
is mapped to the subset of pairs that belong to edges in the Minimum Spanning Tree
(MST). This suggests a natural batch size for estimating the gradient of Equation 10 is
the (𝑃𝑃 − 1) pairs of the MST. The computation that counts the number of times a
MST pair contributes to Equation 10 can be implemented efficiently with a simple
modification of Kruskal’s MST algorithm described in Section 5.1.

It is also useful to compare Equation 10 to the misclassification error of an edge
classifier defined in Equation 11.

𝑀𝑀𝑀𝑀�𝑌𝑌� ,𝑌𝑌� =
1

|ℰ| � 𝐼𝐼�𝑦𝑦�𝑖𝑖𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖𝑖𝑖�
𝑒𝑒𝑖𝑖𝑖𝑖∈ℰ

 (11)

Designing an edge classifier to minimize Equation 11 is straight forward since it
assumes edges are Independent and Identically Distributed (IID) examples. However
this does not include energy minimization within learning and the final classifier is
not optimal for segmentation. In the particular case of Connected Component seg-
mentation, minimizing Equation 11 spends unnecessary effort trying to correctly
classify a subset of the positive edges. We compare performance of classifiers de-
signed with Equations 10 and 11 in our experiments.

5.1 Playing with Kruskal

Kruskal’s algorithm provides an efficient algorithm to count the number of times
each MST edge prediction should be positive and how many times it should be nega-
tive with respect to the Rand Error. Inspired by the work in [11] we outline the ap-
proach in terms of disjoint set data-structures.

Initially, each edge is assigned to its own set. A running sum of the number of label
pairs that are the same, and the number of label pairs that are different are calculated
from the training data as the MST is formed. This requires a 𝐾𝐾-dimensional vector for
each edge, where 𝐾𝐾 is the number of distinct labels in the ground truth. The vector
represents the number of times each label occurs within each set. We use Tarjan’s
Union-Find algorithm for FindCanonical and Union procedures.

Algorithm 1: Kruskal Algorithm for Rand Error counts

Input: An edge-weighted graph 𝐺𝐺 = (𝒱𝒱,ℰ,𝐴𝐴) and labels 𝑌𝑌
Output: A maximum spanning tree (MST)
Output: A collection of sets associated with connected components 𝑸𝑸
Output: Count #same and #diff label pairs for each MST edge
// Collection 𝑸𝑸 is initialized to ∅
1. 𝑒𝑒 := 0;
2. for all 𝑥𝑥𝑖𝑖 ∈ 𝒱𝒱 do
3. MakeSet(𝑖𝑖)
4. labels[𝑖𝑖] := InitLabelCountArray(𝑦𝑦𝑖𝑖)
5. for all edges {𝑢𝑢, 𝑣𝑣} ∈ ℰ by decreasing weight 𝐴𝐴𝑢𝑢𝑢𝑢 do
6. 𝑐𝑐𝑢𝑢 := 𝑸𝑸.FindCanonical(𝑢𝑢)
7. 𝑐𝑐𝑣𝑣 := 𝑸𝑸.FindCanonical(𝑣𝑣)
8. if 𝑐𝑐𝑢𝑢 ≠ 𝑐𝑐𝑣𝑣 then
9. 𝑸𝑸.Union(𝑐𝑐𝑢𝑢, 𝑐𝑐𝑣𝑣)
10. 𝑐𝑐new := 𝑸𝑸.FindCanonical(𝑐𝑐𝑢𝑢)
11. MST[𝑒𝑒] := {𝑢𝑢,𝑣𝑣}
12. #same[𝑒𝑒] = labels[𝑐𝑐𝑢𝑢]𝑇𝑇.labels[𝑐𝑐𝑣𝑣]
13. #diff[𝑒𝑒] = |𝑐𝑐𝑢𝑢| ∗ |𝑐𝑐𝑣𝑣| - #same[𝑒𝑒]
14. labels[𝑐𝑐new] = labels[𝑐𝑐𝑢𝑢] + labels[𝑐𝑐𝑣𝑣]
15. 𝑒𝑒 := 𝑒𝑒 + 1;

Algorithm 1 produces a count of the positive and negative label pairs associated
with each edge in the MST. We use these for learning in multiple different ways.
First, we can calculate Equation 10 for Connected Component segmentation at any
given threshold 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝐼𝐼�𝐴𝐴�𝑋𝑋𝑖𝑖𝑖𝑖� > 𝑇𝑇� with Equation 12.

𝑅𝑅𝑅𝑅(𝐴𝐴,𝑇𝑇,𝑌𝑌) = � 𝐼𝐼(𝐴𝐴𝑢𝑢𝑢𝑢 > 𝑇𝑇) #diff[𝑒𝑒] + 𝐼𝐼(𝐴𝐴𝑢𝑢𝑢𝑢 < 𝑇𝑇) #same[𝑒𝑒]
𝑒𝑒𝑢𝑢𝑢𝑢∈𝑀𝑀𝑀𝑀𝑀𝑀

(12)

Second, we use it to calculate a ROC curve (Receiver-Operator Curve) for the
Rand Error. A ROC curve traces out the fraction of positive pairs that are correctly
predicted (the detection rate), and the fraction of negative pairs that are incorrectly
predicted (the false alarm rate) for a number of different thresholds. Since the edges in
the MST are sorted by Algorithm 1, we can maintain running sums for the two terms
in Equation 12 and consider the set of thresholds that correspond to the MST affinities
𝑇𝑇 = {… ,𝐴𝐴𝑢𝑢𝑢𝑢, … }. Note that in practice we typically use thresholds that lie half way
between consecutive edge affinities since this avoids potential complications with
equality. We show examples of these ROC curves in our experiments.

The third post-processing application for Algorithm 1 is to estimate gradients for
learning algorithms. Typically, learning algorithms minimize a convex surrogate for
misclassification error, known as a loss function, which would replace Equation 10.
However the counts used in Equation 12 still play a role and we will provide a specif-
ic example of this for the Support Vector Machine loss function in the next section.

A final point worth mentioning is that Algorithm 1 can be applied hierarchically.
This means learning does not have to start with pixels, but could start with any initial
(over) segmentation of the image. Given an initial segmentation (also called a set of
super-pixels) we initialize a 𝐾𝐾-dimensional vector for each segment based on the
ground truth labels present in that segment. Algorithm 1 can then be applied to the
super-pixel graph without modification. Note however there are offsets for the posi-
tive and negative counts that must be calculated. These correspond to the number of
positive and negative pairs that are fixed by the initial segmentation. These terms are
easily pre-calculated and included as constants in Equation 12 to obtain the pixel level
Rand Error.

5.2 From Counts to (Sub-) Gradients

Many learning algorithms relax the hard thresholds associated with classification
error with a convex loss function that is easier to minimize. In this paper we use the
hinge loss used in support vector machines, but our approach is general. The Rand
Error with hinge loss (which we call the Rand Loss) is defined in Equation 13.

𝑅𝑅𝑅𝑅(𝐴𝐴,𝑌𝑌) = �𝑃𝑃2�
−1

� 𝑚𝑚𝑚𝑚𝑚𝑚�0,1 − 𝑦𝑦𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖�
{𝑖𝑖,𝑗𝑗}∈𝑃𝑃×𝑃𝑃

 (13)

Note that from this point forward we assume the pairwise labels are expressed as
𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {−1, +1} instead of {0,1}. When the affinity function is a linear model 𝐴𝐴𝑖𝑖𝑖𝑖 =
〈𝑤𝑤,𝜙𝜙(𝑋𝑋𝑖𝑖𝑖𝑖)〉, the sub-gradient of Equation 13 with respect to 𝑤𝑤 is defined by Equation
14.

∇(𝑊𝑊,𝐴𝐴,𝑌𝑌) = −�𝑃𝑃2�
−1

� 𝐼𝐼�𝑦𝑦𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖 < 1�𝑦𝑦𝑖𝑖𝑖𝑖𝜙𝜙(𝑋𝑋𝑖𝑖𝑖𝑖)
{𝑖𝑖,𝑗𝑗}∈𝑃𝑃×𝑃𝑃

 (14)

For Connected Component segmentation Algorithm1 provides the mapping between
every pair in Equation 14 to the MST. The #same and #diff variables can be used
to determine how much each MST edge contributes to the gradient. We define a meta-
label for each MST edge: 𝑙𝑙𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(#same − #diff). Equation 14 can then be
calculated with Equation 15.

∇(𝑊𝑊,𝐴𝐴,𝑌𝑌) = − �𝑃𝑃2�
−1

� 𝐼𝐼(𝑙𝑙𝑢𝑢𝑢𝑢𝐴𝐴𝑢𝑢𝑢𝑢 < 1)(#same − #diff)𝜙𝜙(𝑋𝑋𝑢𝑢𝑢𝑢)
𝑒𝑒𝑢𝑢𝑢𝑢∈𝑀𝑀𝑀𝑀𝑀𝑀

 (15)

The algorithm and mappings described in the last few sections are equally applicable
to Watershed Cuts segmentation. We first replace the affinities 𝐴𝐴 used in Algorithm 1
with the difference in affinities as defined in Equation 9. We denote the difference in
affinities as 𝐴𝐴𝑢𝑢𝑢𝑢∆ = 𝐴𝐴𝑢𝑢𝑢𝑢∗ − 𝐴𝐴𝑢𝑢𝑢𝑢, where 𝐴𝐴𝑢𝑢𝑢𝑢∗ = 〈𝑤𝑤,𝜙𝜙(𝑋𝑋𝑢𝑢𝑢𝑢∗)〉 and 𝜙𝜙(𝑋𝑋𝑢𝑢𝑢𝑢∗) is the feature
vector associated with the 𝐴𝐴𝑢𝑢𝑢𝑢∗ edge. Given these definitions each term in Equation 15
can then be expressed with Equation 16.

∇𝑢𝑢𝑢𝑢= 𝐼𝐼(𝑙𝑙𝑢𝑢𝑢𝑢𝐴𝐴𝑢𝑢𝑢𝑢∆ < 1)(#same − #diff)�𝜙𝜙(𝑋𝑋𝑢𝑢𝑢𝑢) − 𝜙𝜙(𝑋𝑋𝑢𝑢𝑢𝑢∗)� (16)

5.4 Minimizing Loss with Stochastic Gradient Descent

We have now defined the sub-gradients for the Rand Loss in terms of the MST for
both Connected Component and Watershed Cut segmentation methods. The next step
is to use this gradient within an iterative sub-gradient descent algorithm. We use the
mini-batch version of the Primal Estimated sub-GrAdient SOlver for SVM (Pegasos)
[12] which provides good accuracy and runtime bounds. Note, this method also min-
imizes a regularization term and one of the few free parameters with the learning
method is the amount of regularization. Because we are using a batch update proce-
dure we use 1-dimensional line search to find the best threshold instead of finding it
with the sub-gradient descent algorithm. Computationally, this is equivalent to tracing
out the ROC curve, as described in Section 5.1.

6 Application to Microscopy

Material science has a large number of applications which would benefit from op-
timized segmentation methods. On the left in Figure 1 we show two different applica-
tions where ground truth was generated semi-manually by subject matter experts. It
would be challenging to find a single segmentation method that would perform equal-
ly well on both applications. We have three images from each application. In our
experiments we use one of the images for training and then apply the optimized seg-
mentation to the remaining two images to estimate performance in that application.
We repeat this 3 times, using a different image for training each time.

6.1 Learning Segmentation on a Super-Pixel Graph

To reduce the computation time of our experiments, we apply the learning algo-
rithms to super-pixels instead of the original pixels. We use a standard Watershed
algorithm, applied to the magnitude of the image gradient, to produce the super-
pixels. As described in Section 5, we precompute the count offsets for each image to
ensure that our estimates for Rand Error are in terms of the pixel level segmentation
problem.

We use a fixed set of features to represent each edge in the super-pixel graph. The
features include the minimum, maximum, average and range of the gradient magni-
tude along the shared edge, the average and difference in pixel count between seg-
ments, as well as the average and difference in filter bank response between the seg-
ments. The filters themselves are learnt during training, by taking overlapping 5 by 5
image patches in the training image and using k-means to find 8 exemplars, or cluster
centers. In test, we map each 5 by 5 patch of the test image into an 8 dimensional
vector using triangle encoding to the exemplars (see [13] for details). The filter re-
sponses are pooled over each super-pixel and then normalized. In total we have 22
features (4 edge features, 2 size features and 16 texture features).

In our experiments we learn Connected Component and Watershed Cut segmenta-
tions on the super-pixel graph. It is interesting to note that these solutions correspond
to two distinct methods for hierarchical segmentation that have reported in the litera-
ture. Using an initial Watershed followed by Connected Components is perhaps the
most widely used approach and corresponds to making horizontal cuts of a merge tree
based on attributes such as depth, area and volume [14]. Using an initial Watershed
followed by a second Watershed has also been proposed and is known as the Water-
fall algorithm [15]. In our learning experiments we focus exclusively on the second

Fig. 1. Left) Image chips and ground truth segmentations for two different appli-
cations in materials microscopy referred to as Particle and Grain problems. Right)
Performance comparison of maximin learning to IID learning.

stage segmentation and the initial Watershed remains fixed. An interesting direction
for future work would learn both stages of the segmentation hierarchy.

6.2 Comparison to IID Learning

In our first experiment we compare the performance of edge classifiers designed to
minimize the Rand Error (Equation 10) compared to edge classifiers designed to min-
imize Misclassification Error (Equation 11). In the first case we use the Pegasos algo-
rithm with the mini-batch gradient estimates in Equation 15. In the second case we
use the LibLinear [16] package which provides traditional batch mode SVM learning.
We set the amount of regularization in both cases to be very small and we ran the
Pegasos algorithm for 10,000 iterations (Algorithm 1 is executed once per iteration).
Our images were 512 by 512 pixels and produced super-pixel graphs with approxi-
mately 5000 vertices and 15000 edges. On a 2GHz workstation, our unoptimized C
code took approximately 4 minutes to complete the training. The LibLinear training
time is negligible for this problem size.

On the right in Figure 1 we compare the test image segmentation performance for
the two methods. The solutions found by min-batch maximin learning are shown as
red crosses and the SVM performance is shown as black stars. We also show the
associated ROC curves for these solutions. Note, that in terms of the Rand Error, the
black stars are orders of magnitude higher than the red crosses. Part of the problem is
that the SVM threshold is not optimized for Connected Component segmentation and
for reasons described in Section 5, this leads to higher false alarm rates. A potential
solution to this problem is to use LibLinear to train the classifier and then use Algo-
rithm 1 once, at the end, to fine tune the threshold for Connected Components. These
solutions are shown as black boxes in Figure 1. This approach does improve the per-
formance of the LibLinear solution significantly, but there is also still a significant
gap to the maximin solutions found through min-batch sub-gradient descent.

6.3 Comparing Connected Components and Watershed Cuts

In the second set of experiments we compare the mini-batch maximin solutions for
Equation 15 (Connected Component segmentation) and Equation 16 (Watershed Cuts
segmentation). Each learning trial runs for 50,000 iterations at small levels of regular-
ization and the results are shown in Figure 2.

Connected Components (CC) is generally able to find solutions with lower training
error than Watershed Cuts (WC). In the Particle problem CC also had better perfor-
mance on test data. Note that the CC thresholds (red crosses) were less reliable than
for WC (blue circles). In fact, several of the crosses are not visible because the false
alarm rate is much higher than 0.05. However by comparing the performance of CC
in Figure 2 to Figure 1, we see this problem could be mitigated with the appropriate
choice of the regularization parameter with a validation set. What Figure 2 does tell us
is that the WC method appears to be less sensitive to the choice of regularization
parameter.

In the Grains problem the WC method consistently outperformed the CC method.
We observe that the segment boundaries are far less defined in the Grains problem
than in the Particles problem. We suggest the flood-filling characteristics of Water-
shed Cuts may explain this performance improvement.

7 Summary

This paper has expanded the maximin learning framework to provide mini-batch
stochastic sub-gradient descent algorithms for Connected Component and Watershed
Cuts segmentation methods. These algorithms are based a Kruskal-like procedure that
can efficiently compute the gradients and sub-gradients as well as the Rand Error, and
Rand Error ROC curves. The extension of the maximin learning to the Watershed
Cuts method has been shown to be useful in practical applications and appears to the
complement the strengths and weaknesses of Connected Component segmentation.

While the methods and tools for learning energy functions have progressed rapidly
there is still much to be done to make learning to segment robust, fast and efficient.
Specific areas of future research include: 1) Optimizing stochastic sub-gradient de-
scent updates using as much information from the MST as possible. 2) More expres-
sive features and classifiers, such as convolutional networks, that can incorporate
more global information into the segmentation. 3) Extension, or generalization, of
these methods to hierarchical energy functions would also be of much practical and
theoretical interest.

Fig. 2. Left) Training set performance and Right) test set performance on two
different segmentation problems. Connected Components appears to be the pre-
ferred method for Particles and Watershed Cuts preferred for Grains.

Acknowledgement
We would like to thank Laurent Najman for very useful discussions about learning

to segment and the reviewers for excellent feedback. This work was supported by the
Department of Energy’s Laboratory Directed Research and Development program.

References
1. Lafferty, J.D., A. McCallum, and F.C.N. Pereira, Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data, in Proceedings of
the Eighteenth International Conference on Machine Learning. 2001, Morgan
Kaufmann Publishers Inc. p. 282-289.

2. Farabet, C., et al., Learning Hierarchical Features for Scene Labeling. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 2013. 35(8): p. 1915-1929.

3. Arbelaez, P., et al., Contour Detection and Hierarchical Image Segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 2011. 33(5): p. 898-916.

4. Fowlkes, C., D. Martin, and J. Malik. Learning Affinity Functions for Image
Segmentation: Combining Patch-based and Gradient-based Approaches. in CVPR.
2003. Madison, WI.

5. Bansal, N., A. Blum, and S. Chawla, Correlation Clustering: Theoretical Advances in
Data Clustering (Guest Editors: Nina Mishra and Rajeev Motwani). Machine Learning,
2004. 56(1-3): p. 89-113.

6. Couprie, C., et al., Power Watershed: A Unifying Graph-Based Optimization
Framework. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011.
33(7): p. 1384-1399.

7. Cousty, J., et al., Watershed cuts: minimum spanning forests and the drop of water
principle. IEEE Trans Pattern Anal Mach Intell, 2009. 31(8): p. 1362-74.

8. Finley, T. and T. Joachims, Supervised clustering with support vector machines, in
Proceedings of the 22nd international conference on Machine learning. 2005, ACM:
Bonn, Germany. p. 217-224.

9. Turaga, S.C., et al. Maximin affinity learning of image segmentation. in NIPS. 2009.
10. Cousty, J., et al., Watershed Cuts: Thinnings, Shortest Path Forests, and Topological

Watersheds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010.
32(5): p. 925-939.

11. Najman, L., J. Cousty, and B. Perret, Playing with Kruskal: Algorithms for
Morphological Trees in Edge-Weighted Graphs, in Mathematical Morphology and Its
Applications to Signal and Image Processing, C.L. Hendriks, G. Borgefors, and R.
Strand, Editors. 2013, Springer Berlin Heidelberg. p. 135-146.

12. Shalev-Shwartz, S., Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM. in In Proceedings of the Twenty-Fourth International Conference on
Machine Learning (ICML). 2007.

13. Coates, A. and A. Ng, Learning Feature Representations with K-Means, in Neural
Networks: Tricks of the Trade, G. Montavon, G. Orr, and K.-R. Müller, Editors. 2012,
Springer Berlin Heidelberg. p. 561-580.

14. Mangan, A.P. and R.T. Whitaker, Partitioning 3D surface meshes using watershed
segmentation. IEEE Transactions on Visualization and Computer Graphics, 1999. 5(4):
p. 308-321.

15. Beucher, S., Watershed, Hierarchical Segmentation and Waterfall Algorithm, in
Mathematical Morphology and Its Applications to Image Processing, J. Serra and P.
Soille, Editors. 1994, Springer: Netherlands. p. 69-76.

16. Fan, R.-E., et al., LIBLINEAR: A Library for Large Linear Classification. Journal of
Machine Learning Research, 2008. 9: p. 1871-1874.

http://link.springer.com/search?facet-author=%22Laurent+Najman%22

	1 Introduction
	5.1 Playing with Kruskal
	5.2 From Counts to (Sub-) Gradients
	5.4 Minimizing Loss with Stochastic Gradient Descent
	6.1 Learning Segmentation on a Super-Pixel Graph
	6.2 Comparison to IID Learning
	6.3 Comparing Connected Components and Watershed Cuts
	Acknowledgement
	References

