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Abstract— Learning has become an essential part of many 
image and video processing systems, but it is not often used 
as an end-to-end solution. Some of the most successful 
demonstrations of end-to-end learning have been with 
convolutional, or shared weight networks. We are interested 
in how this approach can scale and have developed a 
flexible framework for implementing and training large 
scale convolutional networks called Harpo. We present an 
overview of the Harpo framework and describe a multi-
level learning strategy used to optimize convolutional 
networks for particular features of interest in video data 
streams. Harpo is designed to exploit reconfigurable 
hardware to accelerate massively parallel convolutional 
network components and achieve real-time processing 
speeds. In this paper we present initial software experiments 
which use the system to segment exhaust plumes coming 
from military vehicles in Unmanned Aerial Vehicle video 
data.  
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1. INTRODUCTION 

Computer vision has been a challenging research problem 
for over 50 years and is commonly a target problem for a 
large number of fields including information theory, graph 
theory, set theory, probability and statistics. One of the 
reasons why computer vision is so challenging is the 
problem scale. From asking “which pixels are red?”, it is a 
small leap for humans to ask “which picture is my 
mother?”, but for computer vision, the problem difficulty 
has increased exponentially.   

Much research in computer vision has focused on 
delineating, and then finding solutions, to useful sub-tasks 
e.g. edge/texture detection, shape analysis, motion 

estimation etc. Often these sub-tasks are combined to 
produce systems that can solve more complex problems [1]. 
Sometimes, with the addition of knowledge-based 
approaches, systems are produced which, in fact, can 
answer “which picture is my mother?” and other high-level 
questions for specific applications [2]. However, while 
manual decomposition is generally a good approach to 
solving complex problems, it can run into problems when 
the decomposition is poorly matched to the problem 
structure. This is particularly evident in computer vision 
where there is a strong interdependence between sub-parts, 
and robust performance of one part (e.g. shape 
characterization) depends critically on robust performance 
of other parts (e.g. segmentation).  

An alternative to manual decomposition, which has gained 
increased attention in recent years, is machine learning and 
the promise of automatic problem decomposition. In this 
case, real data is used to drive the design process and 
learning algorithms attempt to extract the important sub-
structures. The appeal of this approach for computer vision 
is simple: Solutions are represented as homogenous black-
boxes that are universal computing machines. The black-
boxes are programmed to solve problems through high-level 
teaching, not low-level design, and the approach scales to 
solve more complex problems by simply “adding more 
stuff” to the black box.  

One of the most successful demonstrations of this approach 
comes from research in shared weight or convolutional 
neural networks. Using gradient based learning Dr. LeCun 
[3] was able to develop one of the most accurate systems 
available for optical character recognition.  Using a similar 
approach several other researchers have reported robust 
recognition systems in a large number of practical 
applications [4], [5]. Researchers have also considered 
convolutional networks in the time domain [6]. This can 
potentially lead to more compact solutions and is naturally 
suited to processing temporal data streams, such as video.  

In our research we are developing techniques and 
technologies that can help scale the convolutional network 
approach to the ever-increasing complexity of computer 
vision problems faced by the defense and intelligence 
communities. In this paper we provide an overview of our 
proposed contribution to this problem, which is novel in 
two ways: 
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(1) A multi-level learning architecture that can help 
address the large-scale learning problem. This is based 
on our previous success with multi-level learning 
architectures for automating analysis of remotely 
sensed satellite imagery [7].  

(2) The ability to automatically map convolutional neural 
network components to reconfigurable hardware 
accelerators, so that large-scale solutions are made 
computationally feasible. This is based on previous 
success in accelerating satellite image processing 
using reconfigurable hardware [8]. 

2. BACKGROUND 

Convolutional Neural Networks 

A convolutional neural network looks much like any other 
multi-layered neural network, in which a collection of 
tunable processing elements are connected in a feed-
forward graph. The only difference in convolutional neural 
networks is that each processing element represents an 
entire array of elements (processing layer), each associated 
with a particular pixel location, and whose tunable 
parameters are all equal (shared). The processing elements 
also usually share a common connectivity. A processing 
element is connected to other elements within a small local 
neighborhood (or window). It can also be connected to 
elements in other processing layers that are typically in the 
same pixel location, or within a small local neighborhood of 
that location. For linear processing elements each 
connection has a multiplicative weight and all connections 
are summed. In this case the processing layer implements a 
convolution of the image with a kernel defined by the 
shared weights. In simple terms, a convolutional neural 
network is a collection of tunable convolution operators 
connected in a feed-forward network.  

Multi-scale Convolutional Neural Networks 

Fukushima [9] was amongst the first to experiment with 
convolutional neural networks and obtained good results for 
character recognition by applying convolutional neural 
networks within an image pyramid architecture: processing 
layers alternate between convolution and sub-sampling. 
This multi-scale architecture has been now widely adopted 
and appears to provide a robust representation in many 
object recognition problems.   

Cellular Nonlinear Networks 

In recurrent convolutional networks a processing element 
can also receive input from its output. This feedback means 
processing elements can implement state variables and 
hence a wide variety of dynamic behavior. The state 
variable formulation of recurrent convolutional networks 
was independently introduced as cellular neural / nonlinear 
networks and is currently promoted by some researchers as 

a new paradigm for spatio-temporal processing [10]. 
Research in this field has centered on the design and 
analysis of network dynamics. Several works also combine 
the multi-scale nature of convolutional networks with the 
temporal nature of cellular nonlinear networks [11]. For the 
rest of the paper we will use the term convolutional network 
(or network for short) in the most general sense and mean it 
to include all multi-scale, feed-forward and/or recurrent 
variations.   

Hardware Implementation 

Convolutional networks benefit greatly from specialized 
implementation compared to implementation with a general 
purpose processor. This is mainly due to the local 
neighborhood communication required by each processing 
element in spatial, spectral and temporal dimensions. In 
reconfigurable hardware systems the memory architecture is 
tailored to the application and can therefore implement 
neighborhood processing very efficiently. In previous work 
we obtained over two-orders of magnitude speed-up for a 9 
layer convolutional network [8]. Reconfigurable hardware 
is based on digital devices and we therefore restrict our 
attention to those convolutional networks that are discrete in 
time.  

3. HARPO SYSTEM OVERVIEW 

We are developing a flexible software / hardware system for 
designing and executing large-scale convolutional networks 
for image and video processing. We refer to the system as 
Harpo and an overview of the system is shown in Figure 1.  

There are two modes of operation: a run-time mode and a 
training mode. In the run-time mode (left of dashed line in 
Figure 1) Harpo is applied as an online system suitable for 
real-time implementation. At each time step, it receives a 

Figure 1 – Harpo system overview 
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frame from a video sequence, executes some network and 
after some latency, produces an output frame.  

In the training mode (right of dashed line in Figure 1) 
Harpo receives an additional training overlay. There is a 
frame to frame correspondence between the training overlay 
and the video input stream. Using supervised learning 
methods, the Harpo system attempts to optimize the 
network to produce output overlays that are in some sense 
close to the training overlay. The specific techniques will be 
discussed in Section 4.  

The network that is executed by the Harpo run-time system 
is defined by two inputs: the network specification file and a 
network parameter file. The specification file contains 
information about the network that is constant from one 
training run to the next. The parameter file contains 
information about the network that has been learnt during 
training. Training mode takes the specification file as input 
and produces a parameter file. In run-time mode both 
specification and parameter files are inputs.   

Network Specification File 

The key to making the Harpo system flexible and scalable is 
a user defined input that we call the network specification 
file. This is a text file that defines a number of processing 
layers, and their connectivity, in an abstract and modular 
way. Figure 2 (top) provides an example specification file 
as well as the network architecture that Harpo will construct 
(below). To simplify Figure 2 the Scale processing layers 
are not shown but are implied by the changing size of the 
processing layers. Processing layers can be defined by the 
user and essentially receive an arbitrary dimension image 
cube as input and produce an arbitrary dimension image 
cube as output. The connectivity between layers define data 
paths that pass image cubes from one layer to the next. In 
Figure 2, two examples of user defined processing elements 
are Linear and Scale.  

The specification file has a hierarchical lisp-like syntax. 
This serves two purposes. First, the specification file itself 
can be instantiated as a processing layer in a secondary 
specification file and hence large-scale solutions can be 
constructed with a typical building-block approach. Second, 
different learning strategies can be applied to different 
levels of the hierarchy (e.g. Evolve in Figure 2) enabling 
what we call multi-level learning. This is described more in 
Section 4.   

The specification file defines the connectivity between 
processing layers, and the learning strategy, but it is also 
used to tailor fixed (or hard coded) functionality at run-time. 
An example of this in Figure 2 is the maximum windowSize 
of spatial filters, which due to hardware considerations, is 
fixed at run-time and cannot be learnt or adapted. Another 
example is the initType keyword seen in the first Linear 
processing layer. Setting the keyword to Gabor will force 

( ThreeLayerPyramid 
       ( inputMem...................................................................... 0 ) 
       ( outputMem.................................................................. 30 ) 
       ( iterationsPerFrame ........................................................ 1 ) 
 
       ( Linear 
             ( inputMem ............................................................... 0 ) 
             ( outputMem..........................................................1: 4 ) 
             ( numFeatures ............................................................ 4 ) 
             ( windowSize............................................................. 5 ) 
             ( initType ........................................................... Gabor ) 
       ) 
 
       ( Scale 
               ( inputMem.........................................................1: 4  ) 
               ( outputMem.......................................................5 : 8 ) 
               ( scaleFactor ......................................................... 0.5 ) 
        ) 
 
      ( Evolve 
             ( popSize................................................................ 100 ) 
             ( genSize .................................................................. 20 ) 
             ( outputMem............................................................ 30 ) 
             ( trainFlag .................................................................. 1 ) 
 
             ( SubNet 
                     ( Linear 
                              ( inputMem .........................................5 : 8 ) 
                              ( outputMem......................................9 : 16 ) 
                              ( numFeatures ........................................... 8 ) 
                              ( windowSize............................................ 5 ) 
                              ( initType .......................................Random ) 
                     ) 
                     ( Scale 
                              ( inputMem .......................................9 : 16 ) 
                              ( outputMem....................................19 : 26 ) 
                              ( scaleFactor ............................................. 2 ) 
                     ) 
                     ( Linear 
                              ( inputMem .....................................19 : 26 ) 
                              ( outputMem........................................... 30 ) 
                              ( initType .......................................... Fisher ) 
                              (trainFlag .................................................. 1 ) 
                     ) 
             ) 
      ) 
) 

 

 
Figure 2.  An example specification file and network. 
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the run-time system to use a fixed set of pre-defined 
kernels.  

Network Parameter File 

For other types of processing layers there is variable (or 
learnable) functionality. For example setting the initType 
keyword in the second Linear layer to Random will cause 
the run-time system to generate a random set of kernel 
weights. In the third Linear layer the same keyword is set 
to Fisher and implies the weights are found by using 
Fisher’s linear discriminant. Processing layers with variable 
functionality are often accompanied by the trainFlag 
keyword. In this case adjustable parameters are found in the 
training mode and saved in the network parameter file. 
These parameters are then loaded and applied in the run-
time mode.  

Temporal Network Design  

To exploit the temporal domain and/or introduce state 
variables the user must explicitly instantiate delay buffers 
(or FIFOs) in the network specification file. Sliding 
temporal windows are implemented by feeding the tapped 
FIFO outputs to subsequent processing layers. State 
variables are implemented by making recurrent processing 
layers which receive input from a delayed version of their 
output. The delay buffer is a processing layer like any other. 
It receives an image cube and produces an output cube at 
each time step. There is a fixed parameter delayLength that 
dictates how many time steps it will take for an input cube 
to appear at the output. The time step is an abstract quantity 
that is usually equal to or less than the frame rate of the 
input stream. It must be specified at run-time and is constant 
for all frames. The network level keyword, 
interationsPerFrame, specifies the time step relative to the 
frame rate. Temporal processing is entirely in the hands of 
the user and can be customized for various modalities and 
data types without adding complexity to the Harpo run-time 
system. Since we are generally interested in solutions that 
are local in time, the complexity of the specification file 
should not increase by too much.  

Targeting Reconfigurable Hardware 

A longer term goal of the Harpo system is to semi-automate 
the process of mapping networks to reconfigurable 
hardware. The specification file, and particularly our 
approach to the time domain, helps make this possible by 
forcing the user to model the data flow used in a real-time 
implementation. For example, memory bandwidth is 
explicitly allocated in the specification file via the delay 
buffer processing layer.  

Providing Training Data with a Video Mark-up Tool 

To help testing of the Harpo system we have implemented a 
graphical user interface that enables users to mark-up 

training data in video sequences. A screen-shot of the 
system is shown in Figure 3. Most native digital video 
formats like mpeg and avi are supported. The GUI allows 
the user to navigate the sequence and mark-up a training 

overlay by using typical drawing tools like paint brush, 
polygon and fill. For the two class classification problem 
features of interest are indicated with green markup and 
examples of the non-feature (or background) are indicated 
by red markup. These two types of mark-up are translated 
into +1 and -1 class labels to be presented to the Harpo 
system as a standard classification problem. Pixels that are 
not marked-up are assumed ‘don’t care’ and do not 
contribute to error in the training procedure.  

 4. MULTI-LEVEL LEARNING 

In training mode, the Harpo framework supports multiple 
types and levels of learning. Different learning methods can 
be combined sequentially and hierarchically.  

By default, processing layers with the trainFlag will learn 
sequentially in the order defined by the specification file 
e.g. the first layer is trained, it is executed with its newly 
found parameters, propagating data to the second layer, 
which is then trained etc. This type of training operates at 
the layer level, is specific to a particular processing-layer 
and therefore usually user defined e.g. the Fisher Linear 
Discriminant is specific to linear processing layers.  

Learning methods can also be combined hierarchically by 
using more general learning methods that wrap sub-
networks. This enables the framework to obtain the benefit 
of both local and global search. Figure 4 provides an 
example of the multi-level learning system for the example 
in Figure 2. For each fitness evaluation of the evolutionary 
algorithm, the SubNet sub-network is trained via sequential 

 
Figure 3– Screenshot of the video markup tool 
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(or feed-forward) local learning. The first Linear layer has 
no learnable parameters and for each evaluation will simply 
execute. The second Linear layer is wrapped by Evolve and 
therefore a population of candidate parameters is generated 
(randomly).  For each candidate, this layer is executed, 
producing inputs for the third Linear layer which is then 
locally optimized (the trainFlag is true) using Fisher’s 
linear discriminant.  

Evolve  

The Evolve layer interfaces to the GALib Genetic 
Algorithms written by Matthew Wall, at the Massachusetts 
Institute of Technology, and therefore has a wide selection 
of evolutionary algorithms available to it. Without further 
code specialization Harpo dynamically generates a linear 
chromosome at runtime based on the sub-network 
processing layers. Crossover points are constrained to fall at 
the boundary between layers and the mutation operator is 
layer specific and therefore user defined.  

Boost 

Harpo also implements several constructive learning 
techniques. These sub-networks are typically generalized 
additive models and have the form:  

 ( ) ( )
1

D

i i
i

h x w g x
=

= ∑  (1) 

where ( )( )sign h x predicts the class label for two-class 

classification and ( )ig x  is a sub-network. We use a 

technique called Boosting to incrementally build the model 
(1), in which case ( )ig x  is also called a weak learner [12]. 

The linear combination in (1) starts with zero terms. For 
each of D iterations we add one new weak learner ( )ig x  

and weight iw  to the model. The procedure is greedy, but 
due to adaptive reweighting of training samples between 

iterations, boosting is able to build models that exhibit good 
generalization. A detailed discussion of the boosting 
procedure can be found in [13] and in most modern machine 
learning textbooks.  

At each iteration of the boosting procedure we either use 
sample and test (e.g. stumps) or a learning algorithm to find 
( )g x  that will reduce error the most. A wide variety of 

weak learners ( )g x  have been suggested, varying in 

complexity from simple thresholds to support vector 
machines. In the Harpo system a weak learner is 
implemented just like any other processing layer and the 
Boosting procedure can therefore be used at any point in the 
network hierarchy e.g. the Boost learning layer could wrap 
an Evolve learning layer and hence use an Evolutionary 
Algorithm as the weak learner.  

Harpo implements two boosting algorithms. The first 
boosting algorithm is discrete AdaBoost [12]. In this case 
the algorithm combines discrete weak learners where 
( ) { }-1,1g x ∈ . The discrete adaBoost procedure provides 

a closed form solution for each w  in (1). The second 
boosting algorithm is called Gentle AdaBoost and 
implements a type of real valued AdaBoost [13]. In this 
case, the algorithm also builds generalized additive models 
(1) but it combines weak learners with real valued 
outputs: ( )ig x ∈ . For each weak learner we use 

weighted least squares to estimate scale parameters 
,a b∈ to adjust the weak learner: ( )( )a g x b− before 

combination. In this case the value of w in equation (2) is 
fixed at 1 (since it is replaced by a above). 

5. PROCESSING LAYERS 

In this section we describe the processing layers that we 
implemented for the experiments in this paper. They are 
motivated primarily by our initial experiments into local 
learning algorithms and hence do not represent the complete 
set of processing layers that are currently available in the 
Harpo system.  

Buffer 

This processing layer is used to implement temporal 
processing and was outlined in Section 3. It has no learnable 
parameters. 

Scale 

This processing layer was used in Figure 2. The 
scaleFactor keyword is used to determine the output image 
size based on the input image. When reducing scale the 

 
Figure 4– Example of multi-level feed-forward learning  
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default behavior is to apply Gaussian spatial smoothing  and 
then subsample. When increasing scale we use linear 
interpolation. There are no learnable parameters. 

Linear 

This is also used in the Figure 2 example. It implements a 
spatial convolution of the input image with a set of weights 
known as a kernel. The keyword windowSize defines the 
width (and height) of the kernel. When the input is an image 
cube with depth D, the default kernel will include spatial 
neighborhoods from each image plane. In this case the 
kernel contains N = windowSize * windowSize * D 
weights. For the special case, windowSize = 1, the kernel 
has N = D weights and the convolution implements a simple 
linear combination of image planes. The default second-
level training method is Fisher’s linear discriminant.  

Threshold 

This layer can implement a hard, linear  or tanh threshold. 
In training this layer finds optimal offset b and orientation 

{ }-1,1a∈  so that ( )( )( )sign a g x b−  has minimal 

error. In our experiments a threshold layer is placed after a 
linear layer to produce the discrete weak-learner required by 
the AdaBoost training layer. 

6. EXPERIMENT DATA 

To test the functionality of our system we developed an 
experiment where the target of interest is the exhaust plume 
produced by a military vehicle when it first moves off from 
a stationary position. This problem is a pixel classification 
or segmentation problem and therefore appropriate for our 
first experiments, which are based on simple, and relatively 
few building blocks. More complex tasks such as military 

vehicle recognition and identification will be investigated in 
future work.  

The data consists of sequences of frames, each being 325 
pixels wide by 256 pixels high with 3 colors and was 
recorded at 30 frames / second from a small (unstable) 
aircraft. We identified 10 separate exhaust plume sequences 
over a 20 minute recording period. Each sequence began 
with a stationary vehicle. As the vehicle moved off, a plume 
becomes visible (to our untrained eyes) and we used the 
video mark-up tool to manually segment 4 adjacent frames 
from each sequence. The sequences cover a wide variety of 
different scales, orientations and plume visibilities. In 
Figure 5 we show an example plume, and corresponding 
mark-up, from four of the ten sequences. Each image is a 
small tile (approximately 150 pixels by 100 pixels) cut from 
the original frame to make reproduction clearer. In our 
experiments, the Harpo system used the entire frame.  

7. EXPERIMENTS 

Our initial experiments investigate learning performance 
with respect to variation in network architecture and scale. 
There are 3 types of network investigated which we call 
Temporal, Multi-scale and Multi-stage. Temporal (Figure 6 
– left) implements a single convolution in both temporal and 
spatial dimensions. Multi-scale (Figure 6 – middle) 
processes reduced scale versions of the input independently 
and the Multi-stage (Figure 6 – right) architecture 
implements the traditional hierarchical convolution 
network. We investigate the affect of adding processing 
layers using the Boosting procedure. This means each 
convolution layer in Figure 6 is actually by a linear 
combination of convolution layers. We used the discrete 
adaboost algorithm and Fisher’s linear discriminant 
becomes the weak learner. For the Multi-scale and Multi-
stage architectures we do not apply boosting to the final 
combination layer.  

 
Figure 5 – Example training frames from 4 of the 10 sequences 
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To compare each configuration (architecture and number of 
weak learners) we randomly chose 5 of the 10 plume 
sequences. Each configuration is trained on the 5 sequences 
and then applied to the remaining 5 sequences.  

8. DISCUSSION 

For the Temporal architecture we noticed very little 
improvement with additional convolution layers. In 
addition, the best performance for the 5 by 5 spatial window 
and 3 frame temporal window convolution was little 
improved over the Fisher discriminant applied to a single 
frame with no spatial information (a linear combination of 
red, green and blue channels). The multi-scale architecture 
appeared to benefit greatly from additional processing 
layers. But for the Multi-stage architecture, the feed-
forward, greedy learning strategy seems particularly sub-
optimal. We hypothesize this may be a common problem in 
deep pipeline architectures due to strong dependencies 
between layers.  

Harpo was able to obtain reasonable results for the plume 
finding problem, particularly with the Multi-scale 
architecture. However, the poor performance of the Multi-
stage architecture, which has traditionally performed 
extremely well for object recognition problems is a concern. 
Most reported successes with a Multi-stage architecture 
have used a back-propagation learning strategy and 
therefore our immediate goal is to incorporate back-
propagation within the multi-level learning framework.  

Another way to help the boosting feed forward approach 
find more cooperative behavior within a Multi-stage system 
is to run an Evolutionary Algorithm at the network level. 
This approach is already available within the Harpo 
framework and future experiments will determine if this is a 
viable alternative to back propagation. 

Table 1.  Milli% Error rates for 1 sampling of the plume 
problem (will average over 5 in the final paper) 

Architecture Number of Layers used in Boosting 

 1 3 5 10 20 

Temporal All errors are 310 %−×  

Train 1.29 1.24 1.26 1.3 1.3 

Test 1.88 1.89 1.99 2.1 2.1 

Multi-scale  

Train 1.27 1.32 0.48 0.38 0.31 

Test 1.55 1.41 1.18 1.26 1.24 

Multi-stage  

Train 1.46 1.42 1.51 1.51 1.52 

Test 1.91 1.90 1.81 1.74 2.03 

9. CONCLUSION 

The modular, regular architecture of convolutional neural 
networks is very attractive for learning, scalability and real-
time implementation using massively parallel hardware. We 
have presented a flexible implementation and design 
environment for large scale convolutional networks called 
Harpo. This system enabled us to rapidly prototype and 
compare variations in network architecture for a plume 
segmentation problem. In future work we plan to extend the 
framework to include mechanisms for spatial, spectral and 
temporal invariances, as well as unsupervised learning 

 
Figure 6 – The three architectures investigated: Temporal (left), Multi-scale (middle) and Multi-stage (right). 
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techniques that are applied at run-time. With these 
extensions, it is hoped our system will produce robust 
solutions to complex object detection, recognition and 
tracking problems.   
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