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Abstract. We propose a system for solving pixel-based multi-spectral image classification problems
with high throughput pipelined hardware. We introduce a new shared weight network architecture that
contains both neural network and morphological network functionality. We then describe its
implementation on Reconfigurable Computers. The implementation provides speed-up for our system in
two ways. (1) In the optimization of our network, using Evolutionary Algorithms, for new features and
data sets of interest. (2) In the application of an optimized network to large image databases, or directly
at the sensor as required. We apply our system to 4 feature identification problems of practical interest,
and compare its performance to two advanced software systems designed specifically for multi-spectral
image classification. We achieve comparable performance in both training and testing. We estimate
speed-up of two orders of magnitude compared to a Pentium I11 500 MHz software implementation.

Keywords: Neural network, morphologica network, shared weight network, reconfigurable computers,
field programmabl e gate arrays, evol utionary agorithms, evolvable hardware.

1. Introduction

Multi-spectral sensors are producing increasing volumes of remotely sensed imagery. With such large
guantities of data, image anadlysis is becoming both an expensive and difficult problem. The
computationa bottleneck appears in two places. The first is agorithm development. There are a large
number of features that are of potentia interest in remotely sensed imagery and a large variety of data
sets that can be exploited. A system that can rapidly develop agorithms for different features, and
different sensors is therefore very attractive. Pattern recognition systems are an ideal candidate for such
problems, and potentialy can provide speciaized solutions using a general-purpose tool. The second
computational bottleneck appears in the application of algorithms to large image databases or directly to
the sensor as the data is acquired. Traditionally pattern recognition systems are developed in software,
and then if possible ported to dedicated hardware systems, to obtain real-time performance. This
approach suffers from long development times. In this paper we present a Reconfigurable Computer
based pattern recognition system that finds high throughput digital hardware solutions to multi-spectral
image classification problems directly.

While pattern recognition ams to produce general-purpose tools, there is often problem specific
knowledge that can be included to obtain better performance. For example, modern multi-spectral
sensors are now being produced with high spatial resolution. Pattern recognition agorithms can
therefore utilize both spectral and spatial information. One approach is to decompose the problem into
feature extraction, followed by classification. With this approach, a number of predefined spatial
algorithms are applied to the raw image data. Classification is then performed in the transformed feature
space. In practice, feature extraction and classification are tightly coupled. A good set of features will
make classification easier, but at the same time, the relevant features will depend on the type of
classifier used. For this reason the feature set must usualy be carefully chosen with respect to the
particular problem. In an effort to produce a more general-purpose pattern recognition tool, other
approaches such as wrapper and filter techniques [1], have been suggested. We will compare our system
to two software systems that use the wrapper approach. In this case, a number of features are generated,
a classifier optimized and performance measured. The feature set is then modified, often according to
heuristic or stochastic techniques, and a classifier re-optimized. The process continues iteratively, until
the desired performance is obtained.

Anocther approach to the feature extraction / classification problem is to include problem domain
knowledge in the classifier architecture itself. Convolutional, or shared weight neural networks, are an
example of this approach, and use architectural constraints to implement known invariants. Shared
weight networks have been successively applied to severa problems in speech and image processing.
[2], [3], [4]. Ancther example of this approach was presented in [5] where a morphological shared



weight neura network was used for an automatic target recognition problem. In this case, a shared
weight morphological input layer was used to implement the hit or miss transform for feature extraction.
This was followed by feed-forward neural network for classification. In both these cases the choice of
network components is dictated, to some degree, by the constraints of gradient based learning
algorithms.

In this paper, we present a new shared weight architecture implemented using Reconfigurable
Computers (RC) [6]. Reconfigurable computers are based on digital logic devices known as Field
Programmable Gate Arrays (FPGAs). FPGAs contain an array of uncommitted digital logic resources
that can be configured to implement application specific processing by downloading a configuration bit-
stream to the device. FPGAs offer performance within a factor of 10 to Application Specific Integrated
Circuits, but since they can be programmed many times, they have many of the benefits and flexibility
of software. A reconfigurable computer usualy incorporates a number of FPGA devices, with loca
memory, on a plug-in board that communicates with a host computer through a global bus.

We use a stochastic optimization technique, from the field of Evolutionary Algorithms (EA), to
optimize the network parameters [7]. This means we can essentialy ignore the learning a gorithm and
define our architecture specifically for the problem. It also allows us to constrain our solution to the
hardware resources available in Reconfigurable Computers. Section 2, will describe our architecture and
motivations in more detail. Section 3 then describes its implementation on a Reconfigurable Computer.
This section also describes how the hardware implementation is used to accelerate the computationally
intensive EA, leading to training time equal to or less than more computationaly efficient gradient-
based techniques. In Section 4, we will describe the Evolutionary Algorithm that we used in more
detail. In Section 5 we will compare our system to two software systems that use the wrapper technique
on severa practica multi-spectral pattern recognition problems. Section 6 we present our conclusions
and suggest directions for future work.

2. Network Design

Paralel, distributed processing, seen in network and cellular architectures, are an attractive model for
computation. This model is particul arly suitable for hardware design for the following reasons:

e Inherent Parallel Processing: The final output of a network is aresult of partial calculations performed
by each node.

e Smple Processing Elements: Each node of the network need only be capable of solving part of a
particular problem and therefore are rel atively simple

e Modular: Nodes are usua ly homogeneous across the network leading to simple large-scale designs.

For these reasons, networks appear to be a good starting point from which to devel op high-throughput
solutions to pattern recognition problems. This is not a new thing, and is partly why neura networks
have received considerable attention for practical problems.

2.1 A Generalized Perceptron

Traditional neurd networks, using linear perceptrons, involve multiplication of inputs by weights, and
then summing the results. This linear operation is then followed by a non-linear activation function to
produce the perceptron output. The linear perceptron, suggested by Rosenblatt [8] is defined in equation

1, where M, X € R and Sign(a) is ahard-limiting function.
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Neura networks have been applied to remotely sensed satellite imagery by severa authors [9], [10].
Neural networks have dso been implemented on FPGAs by severa researchers to acceerate both
training and application of particular networks. A fundamental operation in neural networks is
multiplication. This can be expensive to implement on FPGAS as the number of nodes and connectivity
within the network grows. Several techniques have been used to reduce this problem: implementation of
partially connected neura networks [11], and time multiplexing of network nodes using partia
reconfiguration [12]. FPGA implementations can provide significant speed-up compared to software
implementations, and have the advantage of flexibility, which is of benefit to many applications.
However, for other applications FPGAs cannot provide sufficient densities of neurons and ASIC
implementations, often analogue, are the preferred solution.

For the morphological perceptron, the operations of multiplication and addition are replaced by addition
and maximum / minimum respectively. The definition of the morphologica perceptron comes from
work presented in [13] and is defined by equation 3:

y=8on([ALax+w)]|-9) 3)
where: W,x e R
ae{l-}
/\i'ilh is the minimum of the set {b; ... by }

Morphological perceptrons have been shown to have equivalent classification power to the linear
perceptron [14] and can be implemented on FPGAs much more efficiently than traditional neural
networks. In [15] we found that a morphological network required approximately one quarter of the
resources of a neural network implementation of comparable size. Severa other researchers have
suggested morphological networks but in other forms. Morphological networks presented in [16] use
morphological maximum and minimums to replace the linear perceptron addition, but use multiplicative
weights on the inputs. Min-max classifiers in [17] are similar in principle to [13], but they consider a
restricted set of additive weight parameters.

In this paper we implement a shared weight network architecture that includes both morphologica and
linear perceptron functionality. Thisis described by equation 4.

y=Sgn([ Fim(x +w)]-6) ()
where. M, W, X € R
F.2b, isafunction chosen from a discrete set that operates on the set {by ... b }

The generdized perceptron has both multiplicative and additive weights. In addition, there are

parameters that discretely select F from a finite set. We impose several constraints on this potentially
large set of functions. Firdt, there is a maximum fan-in of 2 applied to the building blocks used to

construct the Function F . This means that a function F of N variables can dways be decomposed into
a number of nested 2 variable functions. Second, adjustable weights are only applied at particular
locations in our architecture. For example, a generalized perceptron with 4 inputs would be constructed
with 2-input building blocks in a multi-layered network shown in Figure 1.
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Figure 1: Constructing Larger Fan-in Perceptrons.



The function set from which F is drawn, is defined by the network of 2-input parameterized functions
Fpar . Three binary parameters {Mux, Func and Morph} define a set of 8 functions that are applied to
the two inputs, which are summarized in Table 1.

Parameterse {0,1} Foar @pplied to inputs by and b,
Mux Func Morph

0 0 0 Average (b + by)/2

0 0 1 Difference (b;—by)/2

0 1 0 Absolute Average | (by+ by)/2 |

0 1 1 Absolute Difference | (by—by)/2 |
1 0 0 Maximum v {by, by}

1 0 1 Minimum A {by, b}

1 1 0 Select by

1 1 1 Select b,

Table 1: Functions defined for F.jb, for N =2

This function set is motivated primarily by the use of the generalized perceptron within a shared weight
network for spatial filtering. Convolutional, or shared weight neural networks, arrange linear
perceptrons in layers. The input to each perceptron is usually from asmall local neighborhood. Weights
are shared amongst all perceptrons in the layer. Figure 2 illustrates this approach for a 3x3
neighborhood leading to a perceptron fan in of N=9. The image array of perceptrons (0,0) through
(M,M) share the same wel ght matrix.
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Figure 2: Neighborhoods of Shared Weight Perceptrons.

This architecture implements a linear spatial filter by convolution of the image with the shared weight
matrix. One of the first implementations of convolutiona neural networks was called the Neocognitron
and was reported in [4]. They have been applied to a wide range of problems in image and signal
processing [2]. Linear spatial filters can implement low, high and band-pass frequency-domain filters
and are ideal for suppressing purely Gaussian noise. When noise is non-Gaussian, nonlinear filters seen
in morphological image processing can be more effective. For example median filters are ideal for
suppressing Laplacian noise [18]. As with the linear perceptron, the morphological perceptron can aso
be used in a shared weight network. Such a network can implement a family of non-linear spatia filters
including soft morphological erosion and dilation [19].

A natura approach to deal with the combination of Gaussian and Non-Gaussian noise found in most
real-world images, is to define a hybrid system that incorporates both linear are non-linear filtering
components. Other examples of this approach are L-filters [20] where multiple order-statistic filters are
combined with a linear combination. In ancther approach [21], the outputs from a bank of linear phase
FIR filters are combined with a median or order statistic filter. A comprehensive account of nonlinear
filters, particularly with respect to hybrid approaches can be found in [22]. By including both linear and
morphological perceptron functionality, a shared weight generalized perceptron network can implement
this type of hybrid architecture.

In Table 1 it can be seen that the function set aso includes the absolute value. This is motivated by edge
detection. In gradient weight kernels suggested by Roberts [23] and Sobel [24], two linear filter weight
matrices are used to estimate the gradient in two orthogona directions. In many practical problems, it is



the magnitude of the gradient that is of interest, not necessarily the direction. This is usually calculated
with the sum of squares, or a sum of absolute va ues of the two orthogonal directions. A similar quantity
is often seen in spatid filters suggested for texture discrimination. Laws in [25] suggested several 3x3
and 5x5 weight matrices specificaly for texture. Similar to Gabor filters [26], they implement
asymmetric band-pass filters. During feature extraction a bank of these filters are often applied to an
image. The sum of squares, or the sum of absolute vaues (texture energy messures), of the filter
responses has been suggested as the most useful quantities. This will be further discussed in the next
section.

2.2 The Spatial Layer.

This section gives more detailed discussion of how the generalized perceptron is used within a shared
weight network. In this discussion it is convenient to refer to the parts of the perceptron separately. That

is, Fq : the three parameter functions described by Table 1 will be referred to as a function building

blocks. Application of both additive and multiplicative coefficients according to Equation 4 will be
referred to as weighting.

b =m*(x +w) (5)

We first describe the spatial perceptron. It receives input from a 5x5 pixel neighborhood depicted in
Figure 3. The node consists of a hierarchical network built from Fpar and input-weighting units.

P11 P1,2 P13 P14 P15
P21 P22 P23 P24 P25
B3 ) P34 P3,5
P4,1 P42 P4.3 P4,4 P45
P51 P52 P53 P54 P55

Figure 3: 5 x5 Neighborhood of the Spatial Perceptron.

At the top level, the 25 inputs are combined into 3 rings. These are grayed in Figure 3. The 5x5 ring has
16 inputs and the 3x3 ring has 8 inputs. The 3" ring is simply the center pixel. Weighting is applied to
the output of each ring. The center and 3x3 ring are then combined with a function building block. This
output is then combined with the 5x5 ring using a second function building block. The hierarchical
summation® of inputs leads to a center bias in the average. This corresponds to a weight of 8 applied to
the center pixd, and a weight of 1 for pixels in both 3x3 and 5x5 rings. To achieve a semi-flat, or
Gaussian average the multiplicative coefficients, which combine the 3 rings, can be used. In addition,
each ring can aso return a maximum, minimum or a subset of order stetistics. By associating weights
with these rings, ahybrid linear/non-linear spatia filter is implemented.

!t is often convenient to describe our architecture in terms of particular parameter specializations.
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Figure4: Order of Combination for 5x5 Ring.

Edge detection dictates the order of pixel combination within the 3x3 and 5x5 rings. The order for the
5x5 caseisillustrated in Figure 4. First, pixelsin each corner of the ring are combined. In the 5x5 case,
a 4-input, 2 layer network of function building blocks is used. In the 3x3 ring, there are only 2 pixels
associated with a corner and therefore only 1 function building block is required. In both cases, this sub-
network can be configured to return the average, maximum or minimum of any subset of pixelsin the
corner. To estimate a gradient opposite corners are then combined with another function building block.
In this case, the absolute value of the difference can be used to calculate the magnitude of the edge
response. The two diagonals that result are then combined with a final function building block. Thisis
most clearly seen in Figure 4. Texture measures based on linear spatia filters have been described as
combinations of center weighted spot detectors and edge masks [27]. By combining edge responses
from one ring with weighted averages of other rings, the spatial processor can effectively implement
these types of band-pass texture measures.

To force rotationally invariant operators, and to reduce the number of parameters, only one quarter of
the network is parameterized. The parameters for the top left quadrant of the network are used, or
shared by the other three quadrants. This is a common way of enforcing rotationaly invariant
structuring el ements when optimizing morphological filters[28]. Figure 5 illustrates the technique. Only
the top-left portion of the neighborhood with gray background has parameters. The parameters are then
rotated through the four quadrants. In this example, a particular set of parameters produces a filter that
depends only on pixels that are crossed. In terms of morphology, the structuring element tha results can
be seen on theright of Figure5.

X [HPICI[
]

=DDD
R
AL X

Figure5: Enforcing Rotational Invariance.

Although rotational invariance is a desirable property, the use of symmetric spatia filtersis not the only
solution. In fact, the more powerful asymmetric spatia filter can be implemented a the cost of
increased resources and larger parameter space. This is illustrated in Figure 6. The entire spatial
network is parameterized and then multiple parameter sharing rotations of this network are applied to
achieve rotational invariance. Similar to filter bank approaches used for texture classification, the
outputs are then combined with additional function building blocks. We have implemented and
experimented with this configuration, however for the remainder of this paper we will restrict our
attention to the symmetrical spatial filters of Figure 5.
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Figure 6: Implementing Rotationally I nvariant Asymmetric Spatial Filters.

2.3 A Multi-Layered Network.

In this section we describe how a multi-layered network is constructed from the spatial layer described.
We first introduce a second type of layer, known as the spectral layer. This layer is built from
generalized perceptrons whose multiple inputs are taken from the same spatial location. For example, in
3-band color imagery, a perceptron in the spectral layer will receive input from the red, blue and green
channels of a single co-registered location. The term Spectral Layer suggests the more genera

application to multi-spectral i magery.

To simplify the hardware implementation the number of bits used to represent perceptron input and
output values is kept constant. This allows layers to be easily cascaded to form larger networks.
Application of weights within the spectral and spatia |ayers means the number of bits must be increased
within the perceptron to maintain full precison. To reduce the number of bits at the output we
implemented a parameterized activation function for both spectra and spatial perceptrons defined by
Equation 6. This replaces the hard-limiting activation function described earlier.

Max _Range if y > Max_ Range
par

ACTq (b) =1 Min_Range  if %ar < Min_ Range ©)
y otherwise
par
where par is an positive integer parameter,

Max_Range and Min_Range are predefined integer constants.

This activation function is illustrated in Figure 7 and applies linear scaing according to an integer
parameter, and saturation at pre-defined constants.
ACT,,..(b)

Max_Range _|_ par=1 S e

—I Min_Range

Figure 7: Parameterized Activation Function.



Multi-layered networks are constructed by using pairs of spectral and spatial layersin series or paralld.
This is similar to the Neocognitron architecture in which pairs of S-cells and C-cells are used
aternatively [29]. Figure 8 illustrates the structure of the particular implementation we experimented
with. We implement 4 layers in paralel, and 6 layers (3 Spectral / Spatia pairs) in series. The entire
network has 16 inputs. In this example the input imagery has 4 spectral channels.

Input
Images Red Green Blue | |Nearl.R.

Spatial
Neighborhood

]

Spectral Layer

1st Layer

Spatial Layer

Spectral Layer
2nd Layer

Spatial Layer

rSpectral Layer

3rd Layer 4

L Spatial Layer

Figure8: A 9-layer Shared Weight Network.

3. Hardwar e Implementation

For our implementation we used the Firebird reconfigurable computer from Annapolis Microsystems
[30]. Thisis a64-bit PCI card that contains a Virtex 2000E FPGA made by Xilinx Inc. [31], and atotal
of 40 Mbytes of on-board memory distributed in 5 independent banks.

There are two goals for our implementation:
1. Toimplement high-throughput solutions to the multi-spectral image classification problem.
2. To accelerate the evolutionary agorithm, or training of our network.

Shared weight networks provide the architecture necessary for the first goal since the perceptrons within
a paticular layer can be easily time-multiplexed. The entire network is implemented with 18 highly
pipelined perceptrons (9 spectra and 9 spatial perceptrons). Input data is provided to the network, one
pixel from each input channel, in raster-scan order. On-chip memory resources are used to buffer rows
of pixels so that, after an associated latency, a spatial layer perceptron has access to the entire
neighborhood each clock cycle. Input to the network is assumed to be 8-bit, 2's complement integersin
the range —127 to 127. The network maintains this data path width and produces an 8-bit 2's
complement output. Max_Range and Min_Range from equation 6 are therefore 127 and —-127
respectively. The sign of the pixel output dictates what class a pixel is assigned to for the 2-class
classification problem. Note, this effectively fixes the threshold parameter 6 from Equation 4 at zero.

The second implementation goal leads to additional on-chip infrastructure, and atight coupling between
the RC and the host workstation. Evolutionary algorithms can be considered a ‘ sample and test’ design
paradigm [32]. This involves choosing a set of parameters, applying the function to the training data,
and finally assessing the performance. When this approach is applied to image processing problems,
application can involve several data intensive operations. By implementing these operations in RC, the
evolutionary algorithm can be greatly accelerated. Figure 9 illustrates the additional on-chip
infrastructure that is required.
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Figure9: Pipelined ‘Sample and Test” Architecture.

The host processor writes parameters to on-chip registers, which dictates a candidate solution in the
parameterized shared weight network. Input images are then passed through the network, producing an
output image. At the same time, the target classification (class labels) are passed to a delay unit. This
unit implements latency equivalent to the shared weight network. The latency adjusted training data is
then compared to the network output in the Error Function unit. An error is calculated and stored in on-
chip registers whereit can be read by the host.

As mentioned earlier, the most computationally intensive component for our problem is the application
of the parameterized network to the input data, and therefore the error function could be caculated
elsewhere. We prefer to calculate this value on-chip due to the communication limitations between host
processor and reconfigurable computer imposed by the PCI globa bus. To efficiently evaluate a large
number of candidate solutions this communication must be minimized. Figure 10 illustrates the
communi cation between host workstation and RC during training.
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Reads Result Data .
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Figure 10: Communication Between Host and Reconfigurable Computer (RC).

In Figure 10, large volume input data and class labels are loaded once at the start of optimization to the
RC local memory. Communication between host and the RC during optimization involves downloading
a particular set of parameters, initiating the network evaluation, and then retrieving the output error.



Only at the end of optimization, is the result image from the lowest error network retrieved for
inspection.

In our implementation we used a binary error metric based on a weighted hamming distance between
the network output and the training data class labels. It is defined in Equation 7.

Error :(T/TT)* O.5+(F%Tj* 0.5 (7)

Te is the number of Class 1 pixels misclassified by the network and T+ is the total number of
Class 1 pixels in the training set. Similarly, F¢ is the total number of class 2 pixels
misclassified and Fr is the total number of class 2 pixelsin the training set.

where:

Positive output pixels are assigned to one class, and negative output pixels the second class. Since in
binary classification problems, finding al Class 2 pixelsis equivalent to finding the Class 1 pixels, two
errors need to be calculated: one error for class 1 pixels being positive and a second error for class 1
pixels being negative. The host program retrieves both these errors from the RC and chooses the best
one.

Note, this error metric is suitable only for binary or two-class classification problems. Secondly, only
classification error is considered. No measure is made of the certainty in decision such as a distance
from the decision boundary. The benefit of the weighted hamming metric is the simplicity of on-chip
implementation.

3.1 Resource Usage

The 18-layer network was implemented at 50MHz. The resource estimates from both Synthesis and
Place and Route software are summarized in Table 2. It can be seen that post synthesis the usage was
estimated at 45%, while after place and route it growsto 64%. This indicates there is significant room to
optimize the design. All components of the network and fitness evaluator architectures were designed
with structural VHDL to which placement constraints can be applied. This effectively alows the design
to be manually placed, which would bring the 64% usage closer to 45%. Manually placing the design
would also alow higher clock rates to be achieved.

Resour ce Number Per cent of chip
Post Synthesis

Number of SLICES 8706 outof 19200 45%

Post Place and Route

Number of SLICES 12427 out of 19200 64%

Number of BLOCKRAMSs 56 out of 160 35%

Number of Tri-state buffers 2256 out of 19520 11%

Table 2: Network Resource Usage.

Note, SLICES are an abstract unit of digital logic resources (Look up tables and registers) for Virtex
FPGA devices. BLOCKRAMS refer to dedicated memory elements that are aso available on Virtex
FPGAs. These were used to implement the spatia layer row-buffering and other latencies required to
pipeline the network.

3.2 Evaluation of Speed-up

Eva uating the speed-up of the RC implementation compared to software implementations is a difficult
problem since the quality of the pattern recognition agorithm is also of interest. In this comparison we
ignore dagorithm quality, and compare the hardware execution speed to a high-level software
approximation of the network components. For the software, execution time was estimated by
implementing a number of optimized image processing operators. For each Spectral Layer in the
network, a linear combination was used. For each Spatial Layer, a 5x5 neighborhood average was
caculated. The software experiment therefore performed a total of 9 linear combinations of 4 images
and 9 neighborhood averages. This software implementation is therefore simpler (and less powerful)
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than the RC implementation. The hardware execution time was the average from 1000 network
evaluations. The execution times and relative speed-up are summarized in Table 3. It can be seen that
the RC implementation, based on a Virtex FPGA device (introduced late 1998) obtains a speed-up of
two orders of magnitude compared to the software implementation running on a 500 MHz Pentium Il
(introduced February 1999).

' . Software RC
Image Size (pixels) Evaluation Time| Evaluation Time Speedup
(Seconds) (Seconds)
65536 0.18 0.001 112
131072 0.36 0.003 124
262144 0.71 0.006 129
524288 1.39 0.01 122
1048576 2.75 0.02 136

Table 3: Evaluation Times for Software and RC | mplementations.
4. Optimization with Evolutionary Algorithms

In this section we describe the evolutionary agorithm that is used to optimize the parameterized shared
weight network. EA have been applied extensively to neura network design and optimization in a
number of different ways. We use EA to optimize parameters of a fixed topology network. This is
similar to optimization of neura network weights in [33] and [34]. The flexibility of EA means the
topology can aso be optimized for a particular problem [35]. Developmental encoding has aso been
suggested, which optimizes a program whose instructions dictate placement and connectivity of
network nodes [36]. A good review of evolutionary neura networks can be found in [7].

When optimizing network architectures, competition (the main evolutionary pressure in traditional EA)
is not the only factor. Since sub-components in a network are dependent, and only contribute partialy to
a complete solution, collaboration is aso required. The idea is to decompose, or modularize the
optimization problem and find a collection of sub-components that work well together. We first define
the subcomponent of our network, known as a node, as a spectral and spatia perceptron par. The
solution space for the entire network is therefore defined by the parameters of 9 nodes. We will discuss
the node representation in Section 4.1. We then describe the genetic operators, which are used to
produce new candidate solutions, in Section 4.2. In section 4.3 we will describe the evolutionary neural
network technique that we used to optimize the complete 9-node network.

4.1 Representation

The parameter space for a node is defined by a combination of integers and binary bits. The hardware
implementation dictated particular representations for particular parameters. However, this can be
significantly different from the representation used to optimize the network. The representation of
parameters in both hardware and software are summarized in Table 4. The additive coefficients are
stored in the hardware registers using two's complement representation. For the multiplicative
coefficients, a sign hit is used (MSB). The activation function is represented by an unsigned integer.
Thereis also an additional unsigned integer parameter associated with each input to the network. Thisis
used to select a particular channel of the multi-spectral input image. This parameter has a range from 1
to the number of bands. The Firebird local memory dictated an upper limit of 12 input channels. The
mutation strategy that is gpplied to parameters to produce new candidate solutions are also summarized
in Table 4.
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Parameter representation
in Software

Parameter representation in
Hardware

Mutation Strategy

Node Parameters (Spectral and Spatial Perceptrons)

BIT Func Binary bit Bit flip
BIT Morph Binary bit Bit flip
BIT Mux Binary bit Bit flip
Two's Complements form of:
INT Sum_Coef Sign(Sum_Coef)*Z'S”m*COd' +1in range {—6 to 6}
INT Mult_Coef Sign Bit Representation of +linrange{—7to 7}

Mult_Coef

UNSIGNED Scaling

Tri-state control lines.

+1inrange{0to 4}

(Activation Function)

Channel Chooser: 4 Per Node (Input layer nodes only)

+1 in range {1 to Number of

Tri-state control lines Bandsin Training Data}

UNSIGNED Band

Table 4: Software Chromosome for Spectral / Spatial Network Node.

4.2 Genetic Operators

Mutation can be applied to a node in a variety of ways, most easily visualized as a mutation tree. For
each mutation there is a probability of a particular branch being taken. Thisis illustrated in Figure 11.
This figure illustrates a 4 input spectral perceptron, followed by the parameterized activation function.
Thisis followed by the spatial perceptron and findly the second activation function. Once the end of the
mutation tree is reached mutation points are chosen with equal probability. The choice of probabilitiesis
fairly arbitrary and is based on familiarity with the representation and experimentation.
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Figure 11: Hierarchical Implementation of Mutation.

For nodes at the input-layer, parameters are also included to select the appropriate channel from the
input data. There is a 20% chance that an input layer node will randomly mutate one of these 4 input
parameters. The remaining 80% of the time, mutation is applied according to Figure 11.

Crossover within the node is applied in a similar way to mutation and isillustrated in Figure 12. In this
case there is a 50% chance that the crossover is applied to the spectral component and 50% chance the
spatial component. Within these components, crossover points (illustrated by dashed lines) are chosen
with equal probability.
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Figure 12: Hierarchical Implementation of Crossover.

4.3 Evolutionary Algorithm

In our implementation we implement 9 error metric units, one for each spectral/spatial layer. This
allows us to efficiently implement an Incremental Learning approach. In the incrementd optimization
of neura networks described in [37], and [38], the optimization begins with one network node. Once
this node has reached a specified level of error, or there is no improvement in error after a specified
number of generations, ancther node is introduced. In some cases, the first node is fixed and the EA is
only applied to the second node. In other cases, the parameter space is extended to include both nodes
are then evolution continues as normal. This process continues until the network has reached a desired
error or maximum number of nodes.

In our implementation, the four 1% layer nodes are optimized in parale in four different populations.
Since an error is caculated on the output from each node, these populations can be optimized
independently. Within each population, we used a simple generational Genetic Algorithm with elitism
[39]. In the second stage, the best 1% layer nodes in each population are configured and remain fixed.
The 4 nodes in the 2" layer are then optimized independently in 4 populations. In the third stage, the
best 2™ layer nodes are also configured. Both 1% and 2™ layer nodes remain fixed and only the output
node i s optimi zed.

To maximally utilize the fitness evaluator resources, al 9 nodes should be involved in evolution at al
times. This is not possible with the Incremental Learning approach, and some nodes remain fixed while
others are evolved. It is possible to evolve higher layer nodes while lower-level nodes are evolved. This
means the 1%, 2™ and 3" layers are evolved in Stage 1. Only the 2" and 3" are evolved in Stage 2 and
just the 3 layer in Stage 3. Thisisillustrated in Figure 13 for clarity. The arrowsin this figure indicate
that optimization of the node configuration is based on the nodes output. This can produce unpredictable
fluctuations in the higher-layer scores, since the data they are supplied with can vary from one
evauation to the next. At the start of the network evolution there is another affect. That is, reward is
given to nodes that simply pass the data on. They are rewarded for the high scores from the lower layers
and therefore not the processing they perform.

Stage 1 Fixed Stage 2 Fixed Stage 3

YO

T Y VNV
& & &

Figure 13: 3 Stage Incremental EA

After Incremental Evolution, a variable number of Optimization Cycles are applied. This is motivated
by the fact that nodes that may not score well individually can be very useful within the network and in
fact may lead to better scoresin the final output. Thisisthe main reason why competition is not the only
factor in network optimization, and co-operative behavior is desired. Various mechanisms have been
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suggested for implementing this with varying levels of complexity [40]. The Optimization Cycle
approach that we used is most similar to greedy strategy suggested in [37].

In the Optimization Cycle, nodes receive reward based on the final network output. There are 9 stages
to the optimization cycle, 1 for each node in the network. The network is configured with the best nodes
from each population that were found in the incremental development phase. Each node in the network
is then evolved in turn using the fitness calculated on the fina network output. This is illustrated for
clarity in Figure 14.

Stage 1 Stage 2 Stage 9

Figure 14: The 9 Stage Optimization Cycle

5. Performance Comparison

In this section we compare the accuracy of our system to two software pattern recognition systems
designed for multi-spectra image classification. The first software system is GENIE [41], which
implements the wrapper feature selection method. In this system, features are constructed by combining
a number of image processing primitives in a graph. A Fisher linear discriminant is then applied to the
graph outputs to produce a classification. A genetic algorithm is used to modify graphs from one
iteration to the next. The image processing primitives include a rich set of linear and non-linear spatial
filters, as well as several more complex spectral processing agorithms. A more detailed description of
the architecture can be found in [42]. The second system, known as AFREET, is aso a wrapper
technique. It produces features by building a number of independent trees from image processing
primitives. It then applies a Support Vector Machine (SVM), typically without kernels, in place of the
fisher discriminant. The feature set is updated according to a greedy heuristic strategy between
iterations [43]. SVM have gained considerable interest for pattern recognition problems since they
implement explicit measures to reduce well-defined bounds on generalization error [44]. The image
processing primitives contain arich variety of both spatial and spectra algorithms similar to the GENIE
system.

In previous experiments we compared our system on 4 different features of interest, over three different
scenes [45]. The scenes are generated from the MODIS arborne simulator data set [46]. Preprocessing
was applied to produce a 10-channel image that simulates the output from the first 10 channels of the
Multi-spectral Thermal Imaging sensor reported in [47]. The features were chosen to span a range of
difficulties. Thefirst feature of interest is water. Thisis the easiest problem of the four since water has a
unique spectral signature. The second problem is to identify the golf courses. It is believed that this
problem is of moderate difficulty but should have distinguishabl e spectral properties. The type of grass
used in golf coursesis often unique and therefore may be detected with purely spectral information. The
third feature of interest is not as well defined, and is ssmply urban or 'built-up' areas. Urban areas can
include a wide variety of materials and therefore spectral signatures. Spatial information is therefore
believed to play an important role in identifying this feature. The fourth feature of interest isroads. This
problem is significantly different from the previous three broad area features. We include it to
investigate the versatility of our system, however we do not expect that our pixel based classification
approach would be competitive with dedicated road finding algorithms.

In previous experiments, we used a leave two-out scheme for training/testing. That is, one scene was
used for training and agorithms were then tested on the remaining two scenes. This was repeated for all
3 permutations. While the ultimate goal of our systems is to produce agorithms that can be applied
across multiple scenes and periods of time, we found that it was difficult to solve this problem using
only one scene for training. One solution to this problem lies in remote sensing and application of
advanced preprocessing to reduce the variation encountered in environment and sensor over long
periods of time. In this experiment, we attempt to overcome this problem by providing the pattern
recognition systems with a more accurate representation of the problem. We introduce a fourth scene for
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each feature. The 4 scenes are then divided into two images by tiling non-overlapping portions from
each scene. This means that half of each of the 4 scenes is represented in both training and testing data.
Examples of the tiled data sets, and associated class labds are illustrated in Figure 15 for the golf
course, and road finding problems. For the class labels, white indicates the feature of interest, gray
indicates non-feature and black corresponds to don't know and does not contribute to the error. The class
labels was generated with a graphical point and paint program and can appear arbitrary. Regions that
are ambiguous are | eft as don’t know to avoid providing inconsi stent training data.

Figure 15: Tiled Images used for Training for the Golf Course and Road Finding Features.

5.1 Resaults

Convergence of evolutionary algorithms is difficult to define. For this reason we apply our system to al
problems at 4 different level s of effort, which are detailed in Table 5. For the GENIE software system, a
population of 100 candidate graphs is evolved over 100 iterations for each problem. The average
training time for the GENIE system was 19 hours. The AFREET system was applied for 200 iterations
(feature selection/SVM optimization). To accelerate the SVM optimization, AFREET sub-samples the
training data. For this reason, execution time does not depend on the training image size, as in the other
systems, but rather the problem difficulty. Execution times varied from 9 minutes through to 50 minutes
and averaged 19 minutes for al the problems.
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Effort Level L ow Medium High Extreme
Execution Time 34.7 seconds 3.2 minutes 15 minutes 56 minutes
Population 50 100 200 200
Generations 120 240 240 480
Optimization Cycles 1 2 6 12

Table 5: Levelsof Effort used in Training.
All systems were trained on each of the two tiled images, for each problem, in turn. The result is then
applied to the second image, for each problem, to obtain an out-of-sample test scores. We define a score
out of 1000 based on the error metric previously defined in Equation 7. Thisis described in Equation 8.
Score= (1- Error )* 1000 (8)

The scores achieved in training and testing are summarized in Tables 6 and 7 respectively.

Training Shared Weight Network GENIE AFREET
Image L ow Medium High Extreme |(Avg. 19 hrs) Time (minutes)
Cloud 1 997.6 999.4 1000 1000 999.9 995.7 10.3
Cloud 2 994 994.9 999.8 999.5 998.6 998.7 9
Golf 1 992.3 995 998.8 997.2 997.3 999.7 9.3
Golf 2 996.1 998.7 999 999.7 998.7 997.9 13.8
Urban 1 881.6 974.3 983.9 987 992.1 984.7 25.3
Urban 2 947 982.6 991.3 993.2 996.5 992 12.3
Road 1 818.3 878.8 892.6 898.2 911 903.6 50
Road 2 904.1 930 917.6 925.4 944.6 935.9 22.7
Table 6: Fitness Scores Obtained on Training Data.
Training Shared Weight Network GENIE | AFREET
Image Low Medium High Extreme
Cloud 1 989 968 981.4 991 978.5 819.6
Cloud 2 995 995 997.2 997.3 999.9 971.3
Golf 1 836.5 962 987 971.4 823.5 966.7
Golf 2 977.6 984 986 987 968.6 998.7
Urban 1 852 957.5 948 947.4 973.2 980
Urban 2 817.2 858.3 922.5 946 936.2 943.5
Road 1 837.4 897.3 883.8 909.3 935.5 913.7
Road 2 800.8 855.9 847.9 816.6 869.7 838.2

Table 7: Fitness Scores Obtained on Testing Data.

Table 8 shows the training and testing scores that were achieved when our system is applied with 8
different random seeds to the Road 1 problem. This experiment was conducted to investigate the
variability of our system at the different levels of effort.
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Run 1 2 3 4 5 6 7 8 Average S.D.
Low
Training | 785.6 835.2 837 813.5 793.4 802.6 845.8 774.7 811 26.2
Testing | 798.3 866.4 827.2 827.2 816.5 796 893 790.5| 826.9 36.1
Medium
Training |878.5 904.8 901.7 859.4 912.7 880 831.8 872.3| 880.2 26.6
Testing [896.7 858 894.2 890 910.9 903.7 876.3 890.3 890 16.5
High
Training| 902 908.9 873.6 909.6 883.3 902.3 901.6 884.2| 895.7 134
Testing [901.6 911.1 899.4 928.5 906.9 895.2 916.6 865 903 18.7
Extreme
Training|894.1 922 899 897.9 871.9 925.4 902 903.7 902 16.7
Testing [871.5 917.1 914.4 909.6 896 913.2 911.1 916.3| 906.2 15.5

Table 8: Fitness Scores Over 8 runsfor the Road Problem (tested on the second road til€).

5.2 Discussion

With low effort, our system performed poorly on both training and test images. This illustrates the
difficulty of the problems, and therefore does not measure the true capacity of the system. With
increased effort, the approach shows potential as a practical pattern recognition system. For the more
difficult problems, our approach is usually outperformed on the training data by the GENIE and
AFREET systems. This indicates tha our system may lack classification power for difficult training
data, compared to the software systems. The network has a fixed number of resources with which it can
work, and therefore this is not surprising. In contrast, both GENIE and AFREET systems are able to
form extremey complex agorithms to fit training data. Test data results indicate that our system does
not appear to suffer from over fitting. It is hypothesized that the limited resources of our system may be
responsible for its good performance on test data.

The results of Table 8 indicate there is variation in performance from one run to the next, particularly at
low levels of effort. This is expected from an evolutionary algorithm system. It can be seen for high-
levels of effort the variation is reduced, which indicates that a more efficient EA search strategy would
help with this problem. In addition, it is noted that for two of the runs a extreme level of effort, our
system actually obtained higher training data scores than both the GENIE and AFREET systems. This
indicates that the system may in fact have sufficient resources for practical problems, however the
difficulty in obtaining these scores is a problem. A different EA strategy may help with this problem.
Another solution would be to increase the classification power of the system, hence providing a richer
solution space that could potentially be searched more easily.

To improve our system, it is concluded that the classification power should be increased. The fact that
the system has a fixed set of resources for problems of varying levels of difficulty may aso be a
limitation, and a more flexible use of the resources may be desirable. At the sametime, it is known that
increasing classifier complexity can lead to problems of over-fitting. Therefore, it is likely that
including explicit measures to avoid over fitting, such as a non-binary error function, on-chip cross
validation or boosting [48], would be beneficial to a more complex system.

6. Conclusons and Future Directions

Evolutionary Algorithms and Reconfigurable Computers have been used independently for a number of
years. More recently, these fields have been combined in the field of Evolvable Hardware. This means
mutual benefit: the long computation times of Evolutionary Algorithms is avoided, and digital hardware
building blocks can be more easily optimized. This new design environment seems idea for producing
high throughput hardware solutions to optimization problems. In this paper we demonstrated this
approach for solving large data volume pattern recognition problems.
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We exploited the flexibility of ‘sample and test’” optimization to define our parameter space in terms of
feature extraction agorithms used in image processing. This resulted in a hybrid feature
extraction/classification architectures that is scalable, inherently paralel and easily implemented.
Analysis of both processing speed and pattern recognition quality suggest our approach can produce
viable high-performance solutions to the multi-spectral classification problem.

Our current implementation uses a static feed-forward architecture. In the field of image and signal
processing, this is considered a Finite Impulse Response (FIR) filter architecture. We intend to extend
our work to include feed-back or state to network layers. This will lead to an Infinite Impul se Response
(IIR) filter architecture. We are particularly interested in these architectures since they are naturaly
suited to real-time video image processing, where temporal information can be exploited. In practice,
IIR filters are usually much more difficult to design than FIR filters. The combination of Reconfigurable
Computing and ‘sample and test’ optimization provides us with a unique framework for designing these
filters.
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